Kang, Jian und Wang, Yuanyuan und Schmitt, Michael und Zhu, Xiao Xiang (2018) Object-based multipass InSAR via robust low-rank tensor decomposition. IEEE Transactions on Geoscience and Remote Sensing, 56 (6), Seiten 3062-3077. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2018.2790480. ISSN 0196-2892.
PDF
21MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8303748/
Kurzfassung
The most unique advantage of multipass synthetic aperture radar interferometry (InSAR) is the retrieval of long-term geophysical parameters, e.g., linear deformation rates, over large areas. Recently, an object-based multipass InSAR framework has been proposed by Kang, as an alternative to the typical single-pixel methods, e.g., persistent scatterer interferometry (PSI), or pixel-cluster-based methods, e.g., SqueeSAR. This enables the exploitation of inherent properties of InSAR phase stacks on an object level. As a follow-on, this paper investigates the inherent low rank property of such phase tensors and proposes a Robust Multipass InSAR technique via Object-based low rank tensor decomposition. We demonstrate that the filtered InSAR phase stacks can improve the accuracy of geophysical parameters estimated via conventional multipass InSAR techniques, e.g., PSI, by a factor of 10-30 in typical settings. The proposed method is particularly effective against outliers, such as pixels with unmodeled phases. These merits, in turn, can effectively reduce the number of images required for a reliable estimation. The promising performance of the proposed method is demonstrated using high-resolution TerraSAR-X image stacks.
elib-URL des Eintrags: | https://elib.dlr.de/116063/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Object-based multipass InSAR via robust low-rank tensor decomposition | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 28 Februar 2018 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 56 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2018.2790480 | ||||||||||||||||||||
Seitenbereich: | Seiten 3062-3077 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | InSAR, multipass, decomposition | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Häberle, Matthias | ||||||||||||||||||||
Hinterlegt am: | 04 Dez 2017 11:10 | ||||||||||||||||||||
Letzte Änderung: | 25 Jul 2019 12:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags