Sakurai, Daisuke and Hege, Hans-Christian and Kuhn, Alexander and Rust, Henning and Kern, Bastian and Breitkopf, Tom-Lukas (2017) An Application-Oriented Framework for Feature Tracking in Atmospheric Sciences. In: IEEE Symposium on Large Data Analysis and Visualization 2017, LDAV 2017 - Proceedings, pp. 96-67. The 7th IEEE Symposium on Large Data Analysis and Visualization, 2. Okt. 2017, Phoenix, Arizona, Vereinigte Staaten von Amerika. doi: 10.1109/LDAV.2017.8231857. ISBN 978 1 5386 0617 9.
![]() |
PDF
- Only accessible within DLR
498kB |
![]() |
PDF
- Only accessible within DLR
680kB |
Abstract
In atmospheric sciences, sizes of data sets grow continuously due to increasing resolutions. A central task is the comparison of spatiotemporal fields, to assess different simulations and to compare simulations with observations. A significant information reduction is possible by focusing on geometric-topological features of the fields or on derived meteorological objects. Due to the huge size of the data sets, spatial features have to be extracted in time slices and traced over time. Fields with chaotic component, i.e. without 1:1 spatiotemporal correspondences, can be compared by looking upon statistics of feature properties. Feature extraction, however, requires a clear mathematical definition of the features - which many meteorological objects still lack. Traditionally, object extractions are often heuristic, defined only by implemented algorithms, and thus are not comparable. This work surveys our framework designed for efficient development of feature tracking methods and for testing new feature definitions. The framework supports well-established visualization practices and is being used by atmospheric researchers to diagnose and compare data.
Item URL in elib: | https://elib.dlr.de/114613/ | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | |||||||||||||||||||||
Title: | An Application-Oriented Framework for Feature Tracking in Atmospheric Sciences | |||||||||||||||||||||
Authors: |
| |||||||||||||||||||||
Date: | 2 October 2017 | |||||||||||||||||||||
Journal or Publication Title: | IEEE Symposium on Large Data Analysis and Visualization 2017, LDAV 2017 - Proceedings | |||||||||||||||||||||
Refereed publication: | No | |||||||||||||||||||||
Open Access: | No | |||||||||||||||||||||
Gold Open Access: | No | |||||||||||||||||||||
In SCOPUS: | No | |||||||||||||||||||||
In ISI Web of Science: | No | |||||||||||||||||||||
DOI: | 10.1109/LDAV.2017.8231857 | |||||||||||||||||||||
Page Range: | pp. 96-67 | |||||||||||||||||||||
ISBN: | 978 1 5386 0617 9 | |||||||||||||||||||||
Status: | Published | |||||||||||||||||||||
Keywords: | Feature extraction, Atmospheric modelling, Radar tracking, Data visualization, Algorithm design and analysis, Data mining, Visualization | |||||||||||||||||||||
Event Title: | The 7th IEEE Symposium on Large Data Analysis and Visualization | |||||||||||||||||||||
Event Location: | Phoenix, Arizona, Vereinigte Staaten von Amerika | |||||||||||||||||||||
Event Type: | international Conference | |||||||||||||||||||||
Event Dates: | 2. Okt. 2017 | |||||||||||||||||||||
Organizer: | IEEE | |||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||||||||||||||
HGF - Program: | Space | |||||||||||||||||||||
HGF - Program Themes: | Earth Observation | |||||||||||||||||||||
DLR - Research area: | Raumfahrt | |||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | |||||||||||||||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | |||||||||||||||||||||
Location: | Oberpfaffenhofen | |||||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Modelling | |||||||||||||||||||||
Deposited By: | Kern, Dr. Bastian | |||||||||||||||||||||
Deposited On: | 19 Oct 2017 13:53 | |||||||||||||||||||||
Last Modified: | 19 Nov 2018 14:12 |
Repository Staff Only: item control page