Hughes, Lloyd and Schmitt, Michael and Mou, Lichao and Wang, Yuanyuan and Zhu, Xiao Xiang (2018) Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN. IEEE Geoscience and Remote Sensing Letters, 15 (5), pp. 784-788. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2799232. ISSN 1545-598X.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/8314449/
Abstract
In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated data set that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently coregistered 3-D point clouds. The satellite images, from which the patches comprising our data set are extracted, show a complex urban scene containing many elevated objects (i.e., buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development toward a generalized multisensor key-point matching procedure.
Item URL in elib: | https://elib.dlr.de/114205/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2018 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 15 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2018.2799232 | ||||||||||||||||||||||||
Page Range: | pp. 784-788 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | synthetic aperture radar (SAR), optical imagery, data fusion, deep learning, convolutional neural networks (CNN), image matching, deep matching | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > SAR Signal Processing | ||||||||||||||||||||||||
Deposited By: | Mou, LiChao | ||||||||||||||||||||||||
Deposited On: | 13 Oct 2017 12:35 | ||||||||||||||||||||||||
Last Modified: | 21 Nov 2023 13:53 |
Repository Staff Only: item control page