Hughes, Lloyd und Schmitt, Michael und Mou, Lichao und Wang, Yuanyuan und Zhu, Xiao Xiang (2018) Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN. IEEE Geoscience and Remote Sensing Letters, 15 (5), Seiten 784-788. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2799232. ISSN 1545-598X.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8314449/
Kurzfassung
In this letter, we propose a pseudo-siamese convolutional neural network architecture that enables to solve the task of identifying corresponding patches in very high-resolution optical and synthetic aperture radar (SAR) remote sensing imagery. Using eight convolutional layers each in two parallel network streams, a fully connected layer for the fusion of the features learned in each stream, and a loss function based on binary cross entropy, we achieve a one-hot indication if two patches correspond or not. The network is trained and tested on an automatically generated data set that is based on a deterministic alignment of SAR and optical imagery via previously reconstructed and subsequently coregistered 3-D point clouds. The satellite images, from which the patches comprising our data set are extracted, show a complex urban scene containing many elevated objects (i.e., buildings), thus providing one of the most difficult experimental environments. The achieved results show that the network is able to predict corresponding patches with high accuracy, thus indicating great potential for further development toward a generalized multisensor key-point matching procedure.
elib-URL des Eintrags: | https://elib.dlr.de/114205/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Identifying Corresponding Patches in SAR and Optical Images with a Pseudo-Siamese CNN | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 15 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2018.2799232 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 784-788 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | synthetic aperture radar (SAR), optical imagery, data fusion, deep learning, convolutional neural networks (CNN), image matching, deep matching | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||
Hinterlegt von: | Mou, LiChao | ||||||||||||||||||||||||
Hinterlegt am: | 13 Okt 2017 12:35 | ||||||||||||||||||||||||
Letzte Änderung: | 21 Nov 2023 13:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags