Blocher, Caroline and Saveriano, Matteo and Lee, Dongheui (2017) Learning Stable Dynamical Systems using Contraction Theory. In: International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017. URAI, 2017-06-28 - 2017-07-01, Jeju, Korea.
Full text not available from this repository.
Abstract
This paper discusses the learning of robot pointto- point motions via non-linear dynamical systems and Gaussian Mixture Regression (GMR). The novelty of the proposed approach consists in guaranteeing the stability of a learned dynamical system via Contraction theory. A contraction analysis is performed to derive sufficient conditions for the global stability of a dynamical system represented by GMR. The results of this analysis are exploited to automatically compute a control input which stabilizes the learned system on-line. Simple and effective solutions are proposed to generate motion trajectories close to the demonstrated ones, without affecting the stability of the overall system. The proposed approach is evaluated on a public benchmark of point-to-point motions and compared with state-of-the-art algorithms based on Lyapunov stability theory.
Item URL in elib: | https://elib.dlr.de/113325/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Learning Stable Dynamical Systems using Contraction Theory | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2017 | ||||||||||||||||
Journal or Publication Title: | International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Learning contracting systems. Stable discrete movements. Learning from demonstration. Contraction theory | ||||||||||||||||
Event Title: | URAI | ||||||||||||||||
Event Location: | Jeju, Korea | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 28 June 2017 | ||||||||||||||||
Event End Date: | 1 July 2017 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||
DLR - Research theme (Project): | R - Terrestrial Assistance Robotics (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Lee, Prof. Dongheui | ||||||||||||||||
Deposited On: | 31 Jul 2017 17:26 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:17 |
Repository Staff Only: item control page