Blocher, Caroline und Saveriano, Matteo und Lee, Dongheui (2017) Learning Stable Dynamical Systems using Contraction Theory. In: International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017. URAI, 2017-06-28 - 2017-07-01, Jeju, Korea.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
This paper discusses the learning of robot pointto- point motions via non-linear dynamical systems and Gaussian Mixture Regression (GMR). The novelty of the proposed approach consists in guaranteeing the stability of a learned dynamical system via Contraction theory. A contraction analysis is performed to derive sufficient conditions for the global stability of a dynamical system represented by GMR. The results of this analysis are exploited to automatically compute a control input which stabilizes the learned system on-line. Simple and effective solutions are proposed to generate motion trajectories close to the demonstrated ones, without affecting the stability of the overall system. The proposed approach is evaluated on a public benchmark of point-to-point motions and compared with state-of-the-art algorithms based on Lyapunov stability theory.
elib-URL des Eintrags: | https://elib.dlr.de/113325/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Learning Stable Dynamical Systems using Contraction Theory | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2017 | ||||||||||||||||
Erschienen in: | International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Learning contracting systems. Stable discrete movements. Learning from demonstration. Contraction theory | ||||||||||||||||
Veranstaltungstitel: | URAI | ||||||||||||||||
Veranstaltungsort: | Jeju, Korea | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 Juni 2017 | ||||||||||||||||
Veranstaltungsende: | 1 Juli 2017 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Lee, Prof. Dongheui | ||||||||||||||||
Hinterlegt am: | 31 Jul 2017 17:26 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags