Kang, Jian and Wang, Yuanyuan and Körner, Marco and Zhu, Xiao Xiang (2017) Improve multi-baseline InSAR parameter retrieval by semantic information from optical images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1-4. IEEE Xplore. IGARSS 2017, 23.-28. July 2017, Fort Worth, USA.
![]() |
PDF
1MB |
Abstract
One of the most unique benefits of multi-baseline synthetic aperture radar interferometry (InSAR) is the longterm monitoring of subtle ground deformation over large areas. Most state-of-the-art algorithms for retrieving such parameter are based on single pixels, e.g. Permanent Scatterer InSAR or clusters of ergodic pixels with stationary phases e.g. SqueeSAR. None of the studies has addressed the joint inversion in an object level, where the true interferometric phase may be varying subject to topography and deformation. Recently, one study has investigated SAR and optical data fusion in order to make use of the rich semantic information from optical images. Based on that work, we seek to investigate the possibility of an object-level multi-baseline InSAR deformation reconstruction given the semantic information from the corresponding optical images. In this paper, we introduced the tensor model for the multi-baseline InSAR inversion and proposed a maximum a posteriori estimator of the deformation parameters by including a spatial prior function in the objective function. Substantial improvement in the deformation estimation is observed in the experiments using both simulated and the real SAR data.
Item URL in elib: | https://elib.dlr.de/112552/ | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | |||||||||||||||
Title: | Improve multi-baseline InSAR parameter retrieval by semantic information from optical images | |||||||||||||||
Authors: |
| |||||||||||||||
Date: | 2017 | |||||||||||||||
Journal or Publication Title: | 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | |||||||||||||||
Refereed publication: | Yes | |||||||||||||||
Open Access: | Yes | |||||||||||||||
Gold Open Access: | No | |||||||||||||||
In SCOPUS: | No | |||||||||||||||
In ISI Web of Science: | No | |||||||||||||||
Page Range: | pp. 1-4 | |||||||||||||||
Publisher: | IEEE Xplore | |||||||||||||||
Status: | Published | |||||||||||||||
Keywords: | object-based, robust, low rank, PSI, multibaseline InSAR, InSAR | |||||||||||||||
Event Title: | IGARSS 2017 | |||||||||||||||
Event Location: | Fort Worth, USA | |||||||||||||||
Event Type: | international Conference | |||||||||||||||
Event Dates: | 23.-28. July 2017 | |||||||||||||||
Organizer: | IEEE | |||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||||||||
HGF - Program: | Space | |||||||||||||||
HGF - Program Themes: | Earth Observation | |||||||||||||||
DLR - Research area: | Raumfahrt | |||||||||||||||
DLR - Program: | R EO - Earth Observation | |||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | |||||||||||||||
Location: | Oberpfaffenhofen | |||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > SAR Signal Processing | |||||||||||||||
Deposited By: | Wang, Yuanyuan | |||||||||||||||
Deposited On: | 30 May 2017 16:11 | |||||||||||||||
Last Modified: | 31 Jul 2019 20:09 |
Repository Staff Only: item control page