elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA

Stratmann, Philipp und Lakatos, Dominic und Albu-Schäffer, Alin (2016) Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA. Frontiers in Neurorobotics, 10 (2). Frontiers Media S.A.. doi: 10.3389/fnbot.2016.00002. ISSN 1662-5218.

[img] PDF
1MB

Offizielle URL: http://journal.frontiersin.org/article/10.3389/fnbot.2016.00002/full

Kurzfassung

There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.

elib-URL des Eintrags:https://elib.dlr.de/103358/
Dokumentart:Zeitschriftenbeitrag
Titel:Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stratmann, PhilippPhilipp.Stratmann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lakatos, Dominicdominic.lakatos (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Albu-Schäffer, AlinAlin.Albu-Schaeffer (at) DLR.dehttps://orcid.org/0000-0001-5343-9074NICHT SPEZIFIZIERT
Datum:8 März 2016
Erschienen in:Frontiers in Neurorobotics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.3389/fnbot.2016.00002
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Knoll, Alois CTechnische Universität MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Röhrbein, FlorianTechnische Universität MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Frontiers Media S.A.
ISSN:1662-5218
Status:veröffentlicht
Stichwörter:elastic movement, neural movement control
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Laufroboter/Lokomotion [SY], R - Vorhaben Weiterentwicklung Robotik - Mechatronik und Dynamik (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Stratmann, Philipp
Hinterlegt am:21 Mär 2016 16:18
Letzte Änderung:08 Nov 2023 15:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.