elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English Mittwoch, 8. Januar 2025
Schriftgröße: [-] Text [+]

Extinction Profiles for the Classification of Remote Sensing Data

Ghamisi, Pedram und Souza, Roberto und Benediktsson, Jon Atli und Zhu, Xiao Xiang und Rittner, Leticia und Lotufo, Roberto (2016) Extinction Profiles for the Classification of Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 54 (10), Seiten 5631-5645. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2016.2561842. ISSN 0196-2892.

[img] PDF
3MB

Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7514921

Kurzfassung

With respect to recent advances in remote sensing technologies, the spatial resolution of airborne and spaceborne sensors is getting finer, which enables us to precisely analyze even small objects on the Earth. This fact has made the research area of developing efficient approaches to extract spatial and contextual information highly active. Among the existing approaches, morphological and attribute profiles have gained great attention due to their ability to classify remote sensing data. This paper proposes a novel approach that makes it possible to precisely extract spatial and contextual information from remote sensing images. The proposed approach is based on extinction filters, which are used here for the first time in the remote sensing community. Then, the approach is carried out on two well-known high resolution panchromatic data sets captured over Rome, Italy, and Reykjavik, Iceland. In order to prove the capabilities of the proposed approach, the obtained results are compared with results from one of the strongest approaches in the literature, attribute profiles, using different points of view such as classification accuaracies, simplification rate, and complexity analysis. Results indicate that the proposed approach can significantly outperform its alternative in terms of classification accuracies. In addition, based on our implementation, profiles can be generated in a very short processing time. It should be noted that the proposed approach is fully automatic.

elib-URL des Eintrags:https://elib.dlr.de/103092/
Dokumentart:Zeitschriftenbeitrag
Titel:Extinction Profiles for the Classification of Remote Sensing Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Ghamisi, Pedram*DLR-IMF/TUM-LMF
Souza, RobertoSchool of Electrical and Computer Engineering - UNICAMP, Brazil
Benediktsson, Jon AtliFaculty of Electrical and Computer Engineering, University of Iceland, 107 Reykjavik, Iceland
Zhu, Xiao XiangDLR-IMF/TUM-LMF
Rittner, LeticiaSchool of Electrical and Computer Engineering - UNICAMP, Brazil
Lotufo, RobertoSchool of Electrical and Computer Engineering - UNICAMP, Brazil
*DLR corresponding author
Datum:2016
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:54
DOI:10.1109/TGRS.2016.2561842
Seitenbereich:Seiten 5631-5645
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iD
Plaza, Antonioaplaza (at) unex.es
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Extinction profile, remote sensing data, image classification, random forests, attribute profile
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Ghamisi, Pedram
Hinterlegt am:04 Mai 2016 10:20
Letzte Änderung:27 Nov 2023 12:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Einige Felder oben sind zurzeit ausgeblendet: Alle Felder anzeigen
Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.