elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multisensor-Based Positioning for Pedestrian Navigation

Khider, Mohammed (2013) Multisensor-Based Positioning for Pedestrian Navigation. Dissertation, Universität Ulm.

[img] PDF - Nur DLR-intern zugänglich
964kB

Kurzfassung

A rapidly growing market for pedestrian location-based services has developed in recent years. Offering the pedestrian the right service, at the right time and in the right place requires accurate knowledge of their position. Global navigation satellite systems (GNSSs) - the best known type of positioning system - fail to provide accurate positioning in indoor and urban canyon environments due to multipath propagation and signal blockage. A substantial quantity of work has recently been carried out in developing positioning approaches that are reliable in all environments. As all single-sensor positioning systems fail, multisensor positioning - where information from two or more positioning sources is combined - represents the state-of-the-art solution. Bayesian positioning algorithms have shown promising results in optimally combining information from different positioning sources. The goal of this work is the development of an optimal pedestrian position estimator able to provide sufficient accuracy and availability in both indoor and outdoor environments. To this end, the use of GNSSs in multisensor positioning approaches has been enhanced through appropriately combining satellite-to-user range measurements with human odometry and position information from other sources. Using satellite-to-user range measurements instead of GNSS receiver position solutions reduces the number of satellite signals required. Moreover, it allows the incorporation of range measurement error models. With the aim of developing an optimal position estimator, two novel pedestrian movement models able to realistically represent the stochastic nature of pedestrian movement have been developed. Incorporating such movement models into Bayesian position estimators is beneficial as they allow pedestrian position and direction in the event of measurement unavailability to be predicted, and moreover help filter erroneous sensor outputs. An optimal Bayesian position estimator has been developed incorporating state-of-the-art fusion algorithms, the movement models developed, appropriately modeled satellite-to-user range measurements, human odometries and other position-related measurements.

elib-URL des Eintrags:https://elib.dlr.de/102465/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Multisensor-Based Positioning for Pedestrian Navigation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Khider, Mohammedmohammed.khider (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:29 November 2013
Erschienen in:Verlag Dr. Hut
Referierte Publikation:Ja
Open Access:Nein
Seitenanzahl:149
Status:veröffentlicht
Stichwörter:GNSS, IMU, multisensor fusion, Bayesian estimation, movement model
Institution:Universität Ulm
Abteilung:Fakultät für Ingenieurwissenschaften und Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation und Navigation
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KN - Kommunikation und Navigation
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben GNSS2/Neue Dienste und Produkte (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Sand, Dr Stephan
Hinterlegt am:26 Jan 2016 10:51
Letzte Änderung:26 Jan 2016 10:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.