elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Joint compression and despeckling by SAR representation learning

Amao Oliva, Joel Alfredo und Foix Colonier, Nils und Sica, Francescopaolo (2025) Joint compression and despeckling by SAR representation learning. ISPRS Journal of Photogrammetry and Remote Sensing, 220, Seiten 524-534. Elsevier. doi: 10.1016/j.isprsjprs.2024.12.016. ISSN 0924-2716.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Kurzfassung

Synthetic Aperture Radar (SAR) imagery is a powerful and widely used tool in a variety of remote sensing applications. The increasing number of SAR sensors makes it challenging to process and store such a large amount of data. In addition, as the flexibility and processing power of on-board electronics increases, the challenge of effectively transmitting large images to the ground becomes more tangible and pressing. In this paper, we present a method that uses self-supervised despeckling to learn a SAR image representation that is then used to perform image compression. The intuition that despeckling will additionally improve the compression task is based on the fact that the image representation used for despeckling forms an image prior that preserves the main image features while suppressing the spatially correlated noise component. The same learned image representation, which can already be seen as the output of a data reduction task, is further compressed in a lossless manner. While the two tasks can be solved separately, we propose to simultaneously training our model for despeckling and compression in a self-supervised and multi-objective fashion. The proposed network architecture avoids the use of skip connections by ensuring that the encoder and decoder share only the features generated at the lowest network level, namely the bridge, which is then further transformed into a bitstream. This differs from the usual network architectures used for despeckling, such as the commonly used Deep Residual U-Net. In this way, our network design allows compression and reconstruction to be performed at two different times and locations. The proposed method is trained and tested on real data from the TerraSAR-X sensor (downloaded from https://earth.esa.int/eogateway/catalog/terrasar-x-esa-archive). The experiments show that joint optimization can achieve performance beyond the state-of-the-art for both despeckling and compression, represented here by the MERLIN and JPEG2000 algorithms, respectively. Furthermore, our method has been successfully tested against the cascade of these despeckling and compression algorithms, showing a better spatial and radiometric resolution, while achieving a better compression rate, e.g. a Peak Signal to Noise Ratio (PSNR) always higher than the comparison methods for any achieved bits-per-pixel (BPP) and specifically a PSNR gain of more than 2 dB by a compression rate of 0.7 BPP.

elib-URL des Eintrags:https://elib.dlr.de/212186/
Dokumentart:Zeitschriftenbeitrag
Titel:Joint compression and despeckling by SAR representation learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Amao Oliva, Joel AlfredoJoel.Amao (at) dlr.dehttps://orcid.org/0000-0001-6202-1665NICHT SPEZIFIZIERT
Foix Colonier, Nilsnils.foix (at) ensta-bretagne.orghttps://orcid.org/0009-0009-2962-171XNICHT SPEZIFIZIERT
Sica, FrancescopaoloFrancescopaolo.Sica (at) unibw.dehttps://orcid.org/0000-0003-1593-1492NICHT SPEZIFIZIERT
Datum:14 Januar 2025
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:220
DOI:10.1016/j.isprsjprs.2024.12.016
Seitenbereich:Seiten 524-534
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:Synthetic Aperture Radar (SAR), Despeckling, Image compression, Machine learning, Self-supervised learning, Representation learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Amao Oliva, Joel Alfredo
Hinterlegt am:28 Jan 2025 14:51
Letzte Änderung:28 Jan 2025 15:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.