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A B S T R A C T

Synthetic Aperture Radar (SAR) imagery is a powerful and widely used tool in a variety of remote sensing
applications. The increasing number of SAR sensors makes it challenging to process and store such a large
amount of data. In addition, as the flexibility and processing power of on-board electronics increases, the
challenge of effectively transmitting large images to the ground becomes more tangible and pressing. In this
paper, we present a method that uses self-supervised despeckling to learn a SAR image representation that
is then used to perform image compression. The intuition that despeckling will additionally improve the
compression task is based on the fact that the image representation used for despeckling forms an image
prior that preserves the main image features while suppressing the spatially correlated noise component.
The same learned image representation, which can already be seen as the output of a data reduction task,
is further compressed in a lossless manner. While the two tasks can be solved separately, we propose to
simultaneously training our model for despeckling and compression in a self-supervised and multi-objective
fashion. The proposed network architecture avoids the use of skip connections by ensuring that the encoder
and decoder share only the features generated at the lowest network level, namely the bridge, which is then
further transformed into a bitstream. This differs from the usual network architectures used for despeckling,
such as the commonly used Deep Residual U-Net. In this way, our network design allows compression and
reconstruction to be performed at two different times and locations. The proposed method is trained and tested
on real data from the TerraSAR-X sensor (downloaded from https://earth.esa.int/eogateway/catalog/terrasar-
x-esa-archive). The experiments show that joint optimization can achieve performance beyond the state-of-
the-art for both despeckling and compression, represented here by the MERLIN and JPEG2000 algorithms,
respectively. Furthermore, our method has been successfully tested against the cascade of these despeckling
and compression algorithms, showing a better spatial and radiometric resolution, while achieving a better
compression rate, e.g. a Peak Signal to Noise Ratio (PSNR) always higher than the comparison methods for
any achieved bits-per-pixel (BPP) and specifically a PSNR gain of more than 2 dB by a compression rate of
0.7 BPP.
1. Introduction

Over the past decades, space-borne Synthetic Aperture Radar (SAR)
imagery has proven to be extremely useful for a wide range of appli-
cations. With the recent increase of SAR missions from several space
agencies around the world and from private companies, data storage
and downlink are one of the major challenges in the ground segment of
a mission. In addition, with the recent advances in on-board processing
systems, both hardware and software, on-board SAR processing is
becoming a reality and a desired solution not only for near real-time
applications. As a result, the need for effective compression algorithms
in the space segment is becoming more urgent.

∗ Corresponding author.
E-mail address: joel.amao@dlr.de (J. Amao-Oliva).

SAR image compression is not a new task in remote sensing, nor
a consequence of the incremental use of deep learning (DL) based
processing of SAR data. On the contrary, since decades researchers
dedicated efforts in SAR image compression, as seen in Baxter (1999)
Mercier (2003). The use of the wavelet transform for compression is
very common as shown in Zeng and Cumming (2001). Similarly, sparse
representations have been used successfully for compression (Zhan
et al., 2013). DL based image compression, on the other hand, is
relatively new. Recent work on end-to-end optical image compression
has shown that DL-based approaches can outperform conventional
compression methods, such as JPEG, JPEG2000, WebP, and BPG, as
https://doi.org/10.1016/j.isprsjprs.2024.12.016
Received 31 January 2024; Received in revised form 19 December 2024; Accepted
vailable online 14 January 2025 
924-2716/© 2025 The Authors. Published by Elsevier B.V. on behalf of Internatio
pen access article under the CC BY license ( http://creativecommons.org/licenses/by
 20 December 2024

nal Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an 
/4.0/ ). 

https://www.elsevier.com/locate/isprsjprs
https://www.elsevier.com/locate/isprsjprs
https://orcid.org/0000-0001-6202-1665
https://orcid.org/0009-0009-2962-171X
https://orcid.org/0000-0003-1593-1492
https://earth.esa.int/eogateway/catalog/terrasar-x-esa-archive
https://earth.esa.int/eogateway/catalog/terrasar-x-esa-archive
mailto:joel.amao@dlr.de
https://doi.org/10.1016/j.isprsjprs.2024.12.016
https://doi.org/10.1016/j.isprsjprs.2024.12.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2024.12.016&domain=pdf
http://creativecommons.org/licenses/by/4.0/


J. Amao-Oliva et al.

o

m
h
s
s

n
f
i
v

s
t

i
c
T

c
U
a
g

s
b
i
t
p

t
p
p
p

a
t

S

e

b

i
t
r
e

a
m
T
t
i
u
r
m

e

e

ISPRS Journal of Photogrammetry and Remote Sensing 220 (2025) 524–534 
well as other machine learning (ML) approaches (Ballé et al., 2017,
2018). However, the applicability of these approaches to SAR data is
limited due to the presence of speckle. The problem of speckle removal,
r despeckling, is an extensively studied topic and is usually treated

as a separate task. Despeckling has been tackled by various classical
methods (Argenti et al., 2013), such as filtering in a transformed
space, namely variational approaches, and the most recent non-local

ethods, among others. In recent years, several DL-based methods
ave been proposed that address the despeckle task in supervised and
elf-supervised frameworks. The most recent approach that has shown
tate-of-the-art performance is the MERLIN method (Dalsasso et al.,

2022b), which exploits the independence between the real and imagi-
ary parts of a single SAR image to set up a self-supervised framework
or learning the underlying SAR reflectivity. As the same authors show
n a follow-up paper, this approach can be effectively used to pro-
ide a learned representation of the SAR signal capable of supporting

concurrent tasks such as segmentation and regression (Dalsasso et al.,
2023).

In this paper, we address the task of joint compression and de-
speckling of SAR images by exploiting learned SAR representations.
We show that the two tasks can help each other to obtain a clean
image while preserving spatial and radiometric resolution and a cor-
responding compressed signal dimension that is reduced down to a
fraction of a bit per pixel. We attribute this good result to the fact that
both tasks independently aim at obtaining a representation of the SAR
image that preserves the main signal features. Optimizing the network
in a self-supervised manner and with a multi-objective loss function
allows us to obtain the best performance in terms of despeckling and
compression compared to the state-of-the-art. The concept that denois-
ing can also promote additional tasks has already proven effective for
natural images for the tasks of compression (Cheng et al., 2022) and
egmentation (Buchholz et al., 2020), and for SAR data for segmenta-
ion and regression (Dalsasso et al., 2023). By exploiting the training

strategy proposed in Dalsasso et al. (2022b), our methodology automat-
cally takes into account the SAR signal statistics as well as its main
haracteristics for the purpose of improving SAR image compression.
o show the importance of this last aspect, we further compare with

the cascade of state-of-the-art despeckling and compression algorithms
and show that the proposed approach can achieve better performance.
Additionally, our contribution was to design an ad-hoc network ar-
chitecture where the encoder and decoder components do not share
any parameters. This is done to separate the compression process of
the SAR image from its subsequent reconstruction. This departure from
onventional network structures, such as the widely used Deep Residual
-Net for despeckling, guarantees the independence of the compression
nd reconstruction operations. As a result, this approach can be used for
round segment processing, such as data compression and subsequent

reconstruction at a later time, as well as for the space segment, by
eparating the actual network architecture in two, the encoder part on
oard the platform and the decoder head on the ground. The result-
ng ‘‘sAr Despeckling And coMpression’’ (ADAM) framework has been
rained and tested on real TerraSAR-X images and shows state-of-the-art
erformance for both despeckling and compression tasks.

2. Related work

In recent years, ML has shown remarkable results in various image
processing tasks, including detection, classification, semantic segmen-
ation, and denoising. Several application areas have also been ex-
lored in the SAR domain, such as land cover classification, detection,
arameter inversion, despeckling, interferometric SAR (InSAR) data
rocessing, and fusion of SAR and optical images (Fracastoro et al.,

2021a). Due to the statistical characteristics of SAR images, classical
DL models cannot be applied directly, but always need to be adapted
to the peculiarities of the SAR signal. As a result, the most promising
525 
approaches are those that usually take into account the system param-
eters, such as geometry, acquisition modality and operating frequency,
s well as the statistical properties of the signal to tailor the method to
he specific SAR application.

Some of the most common pitfalls associated with the use of DL with
AR data can be summarized as follows (Zhu et al., 2021; Fracastoro

et al., 2021b):

• The lack of ground truth is often solved by resorting to generating
synthetic data in the framework of supervised learning. Implicitly,
this is equivalent to simulating the image prior and the likelihood,
with the consequence that any deviation from the real data will
generate errors in the final result.

• The acquisition geometry greatly affects the SAR data, e.g. by
producing effects such as layover and shadows that are related
to a specific geometry. Therefore, data augmentation such as
patch rotation, which is often required to ensure better DL model
training, would not make much sense for SAR.

• Speckle statistics must be carefully considered. The signal-
dependent and multiplicative nature of speckle noise complicates
the use of classical DL methods. In addition, the signal-dependent
nature of the speckle noise and the large dynamic range of the
SAR lead to high noise variance. Often, homomorphic transfor-
mations are used to transform the multiplicative noise into an
additive noise, which also implies to consider the new signal
statistics in the homomorphic domain.

2.1. Despeckling

DL offers a variety of approaches for despeckling, leveraging differ-
nt network architectures and training strategies. These methods have

been reviewed in Denis et al. (2021) and explored in greater depth
in Fracastoro et al. (2021b), which also discusses potential future di-
rections. Furthermore, Dalsasso et al. (2020) investigates the impact of
pre-training strategies and compares their benefits against end-to-end
training approaches.

In this section, we introduce some of the main concepts of DL-
ased SAR despeckling, which often involves multiple steps of data

preprocessing, diverse training strategies based on different types of
data, and pre-trained networks. A key distinction in these methods lies
between supervised and self-supervised methodologies.

Supervised training strategies have demonstrated strong perfor-
mance in SAR despeckling tasks. Training a neural network in a su-
pervised manner involves selecting a network architecture and training
t on paired (input, reference) data. The training process minimizes
he error between the network’s output and the reference image. A
eference dataset is often achieved by data simulation, which offers
xtreme flexibility in training the network but, on the other hand,

could introduce errors due to possible mismatches between simulated
nd real data. Alternatively, real data can be used through temporal
ulti-looking to generate a ‘‘ground truth’’ image (Mazza et al., 2021).
his ground truth serves as reference for training, while the input is
ypically the detected backscatter of a single-look complex (SLC) SAR
mage. This approach is often referred to as ‘‘semi-supervised’’, where
ser supervision is present but the training primarily relies on noisy
eal data. An example of this approach can be found in the SAR2SAR
ethod (Dalsasso et al., 2021).

Self-supervised training strategies are particularly attractive because
they do not require reference data, such as ground truth images or syn-
thetic datasets. The primary advantage of these methods is their ability
to avoid domain shifts between the training data and the operational
data, a limitation often encountered in supervised approaches (Dalsasso
t al., 2022a).

A recent self-supervised training approach introduced in Dalsasso
t al. (2022b) exploits the statistical properties of SAR images. It

builds on the observation that the real and imaginary parts of an SLC
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Fig. 1. (1) MERLIN training strategy; (2) Inference of the underlying reflectivity with a given network architecture.
SAR image are independent and identically distributed realizations of
the same random process. This insight allows for a unique training
scheme: the squared real part is used as the input to the network,
while the squared imaginary part serves as reference (or vice versa). By
leveraging this property, the network learns to despeckle SAR images
without requiring external ground truth or synthetic training data.

One can decompose the received complex SLC as 𝜂 = 𝐴𝑒𝑖𝜑 =
𝑎 + 𝑖𝑏, (𝑎, 𝑏) ∈ R2, where its pdf can be expressed as:

𝑝𝜂(𝑎 + 𝑖𝑏) = 1
𝜋 𝑠 𝑒

−|𝑎2+𝑏2|∕𝑠

= 1
√

2𝜋
√

𝑠∕2
𝑒−𝑎

2∕𝑠 1
√

2𝜋
√

𝑠∕2
𝑒−𝑏

2∕𝑠,
(1)

with its real and imaginary parts identically distributed: 𝑎 ∼  (0, 𝑠∕2)
and 𝑏 ∼  (0, 𝑠∕2). Here, 𝑠 represents the underlying reflectivity. The
intensity image can be expressed as 𝐼 = 𝑅𝑒2 + 𝐼 𝑚2, where 𝑅𝑒2 = 𝑎2

and 𝐼 𝑚2 = 𝑏2. The MERLIN approach, visually presented in Fig. 1, uses
this property of SAR data to perform self-supervised learning, using as
input 𝑅𝑒2 (or 𝐼 𝑚2) and as a reference 𝐼 𝑚2 (or 𝑅𝑒2) to estimate the SAR
reflectivity. Given the function 𝑓𝜃 , the trained model parametrized in
𝜃, at test time MERLIN applies twice the inference: once on 𝑅𝑒2 and
once on 𝐼 𝑚2 to obtain a final intensity estimate:

𝐼 = 1
2

(

𝑓𝜃(𝑅𝑒2) + 𝑓𝜃(𝐼 𝑚2)
)

. (2)

2.2. Compression

Common DL-based approaches for image compression use autoen-
coder architectures. An autoencoder is a feedforward neural network
with the same input and output shapes, along with two mirrored sets
of layers, the encoder and decoder, connected by a generally smaller
representation of the data corresponding to the latent space. When
the goal is to accurately reproduce the input, the autoencoder finds
a representation in a space that is usually compressed with respect
to the original domain. The size of this latent space can be chosen,
for example, to reduce data dimensionality. Considering this, one can
compare the encoder and decoder to the transform and the inverse
transform typically used in compression schemes such as transform
coding. An example of a data flow in transform coding is shown in
Fig. 2.

We will refer to the encoding-decoding operation as the analysis
and synthesis transform, respectively, and denote them by 𝑔𝑎(⋅) and
𝑔𝑠(⋅). The input data, e.g., 2D images, is denoted by 𝑥, while its
latent representation is denoted by 𝑦 = 𝑔𝑎(𝑥). The reconstructed data
estimated by the autoencoder is denoted by �̂� = 𝑔𝑠(𝑦) = 𝑔𝑠(𝑔𝑎(𝑥)).

A variant of the autoencoder architecture, the variational autoen-
coder (VAE), was introduced in Kingma and Welling (2013), based
526 
Fig. 2. Data flow usually found in transform coding.

on the idea of adding probabilistic constraints onto the latent space,
considered as samples of distributions that are learned during training
as well. Such distributions can be learned by minimizing a Kullback–
Leibler divergence term (Goodfellow et al., 2016), which measures
how different two distributions are, which is then added into the loss.
Variational autoencoders have shown success in the literature (Ballé
et al., 2017, 2018), presenting even better compression ratios than
the state-of-the-art compression approaches. Compressing SAR images
via variational autoencoders has also seen some success in recent
years (Xu et al., 2022; Di et al., 2022). However, such architectures
work directly on detected images. In addition, joint decompression and
denoising approaches for optical images also had been explored in the
literature with good performance (Cheng et al., 2022; Alves de Oliveira
et al., 2022a), further supporting the idea of jointly despeckling and
compressing SAR images. An end-to-end compression architecture uti-
lizing VAE developed in Ballé et al. (2017) performs self-supervised
compression, in which instead of computing the Kullback–Leibler di-
vergence term to learn the distributions, the bitrate, i.e. the bits per
pixel required to encode the information, is estimated from an entropy-
based calculation, where the entropy model is assumed to adopt a
parametric form in which its parameters are fitted to the data. This rate
term, denoted by 𝑅, is then added to the loss function that needs to be
minimized, where the smallest bitrate is achieved when the entropy is
minimized if the model distribution is identical to the marginal (Ballé
et al., 2018). To compress the data, the input of the arithmetic encoder
must be quantized. However, the quantization function is not differ-
entiable everywhere, which is unsuitable for backpropagation during
the training phase. Therefore, instead of optimizing the original rate
term, which should be the discrete entropy of the vector of quantization
indices, the differential entropy is optimized (Ballé et al., 2016). This
entropy is based on a continuous relaxation of the signal’s density,
which is obtained by convolving said density with an uniform distri-
bution modeling quantization noise. This allows to train the neural
network with a differentiable estimation of the rate, while the inference
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will be performed with an actual quantization function. The other
term in the loss function is the distortion 𝐷, which can be the mean
squared error (MSE) or another distortion metric (Ballé et al., 2017).
Since one wants to minimize both terms, the proposed loss function 𝐽
was formulated as a relaxed rate–distortion optimization problem by
introducing a Lagrangian multiplier 𝜆. With the same notation as in
he previous section, and with �̂� as a quantized version of 𝑦, the loss
unction can be defined as:

𝐽 (𝑥, �̂�, �̂�) = 𝑅(�̂�) + 𝜆𝐷(𝑥, �̂�). (3)

Variations of 𝜆 in Eq. (3) above will change the rate–distortion
rade-off of the network trained with this loss. Indeed, if one gives
ore importance to the distortion, the network will try to minimize

the distortion rather than the rate, resulting in more bits required to
ncode the compressed image.

The network introduced in Ballé et al. (2018) was initially made of
convolutional layers with a particular activation function called gen-
eralized divisive normalization (GDN), with its ‘‘reciprocal’’ function
being the inverse GDN (IGDN). The GDN function was defined and
roved well-defined and invertible in Ballé et al. (2015) and adds non-

linearity into the trained models, achieving higher compression ratios
while minimizing the compression distortion (Ballé et al., 2021; Ballé,
2018). It is important to note that, in the VAE proposed in Ballé et al.
(2018), the training and predicting take two different operations:

• When the network performs a prediction, the input 𝑥 goes through
the convolutional layers of the analysis transform, and 𝑦 = 𝑔𝑎(𝑥)
is obtained. Then the same latent representation is quantized into
�̂�, thanks to a quantizer denoted by ‘‘Q’’. �̂� is then encoded with
binary arithmetic coding (Ballé et al., 2017; Langdon, 1984),
working thanks to an entropy model created with the learned
prior distributions of the latent space, in which the bitstream is
obtained after lossless arithmetic encoding. After reception, this
bitstream is decoded by an arithmetic decoder, which accesses
the same entropy model as the arithmetic encoder. Then, the syn-
thesis transform is applied to �̂�, yielding the DL model’s estimate
�̂� = 𝑔𝑠(�̂�).

• During training, 𝑦, the output of the analysis transform, is per-
turbed by a uniform noise into �̂�, to simulate the effect of quanti-
zation (Ballé et al., 2017). Then, a differentiable upper estimation
of its bitrate is made by an entropy model and kept in memory to
add it into the loss function, see rate 𝑅 in Eq. (3). The synthesis
transform is then applied to �̂�, yielding �̂� = 𝑔𝑠(�̂�), which is used to
compute the loss. The model weights are updated, including the
prior, so that the model learns the latent space’s distributions.

This model had been extended in Ballé et al. (2018) to include
a hyperprior that is estimated by a side network, further increasing
its performance compared to the original (Ballé et al., 2017) archi-
tecture. Therefore, it can be assimilated to a hierarchical Bayesian
model (Kruschke and Vanpaemel, 2015; van de Schoot et al., 2021)
hat would be more robust to changes in statistics in the data.

3. Proposed ADAM framework

Current state-of-the-art algorithms for SAR image compression often
verlook the fact that prior despeckling can lead to higher compression
ates and to more efficient data transfer. Low-entropy signals, such as
he deterministic reflectivity characterized by regular patterns and re-
undancy, are more compressible than high-entropy signals like speckle
oise, which lack structure and exhibit random behavior.

Current ML-based methods consider despeckling and compression
asks separately. While this separation makes sense from a process-

ing point of view, when the goal is to estimate and compress the
esulting reflectivity, a joint approach that can despeckle and compress
he reflectivity simultaneously can be seen as optimal. Although the
527 
combination of joint compression and denoising is not a novel idea,
state-of-the-art algorithms such as in Alves de Oliveira et al. (2022b)
are tailored either for optical satellite images and the denoising was
obtained through supervised learning by simulating pairs of noisy and
noise-free images or for natural images (Cheng et al., 2020).

3.1. Network architecture

The proposed framework uses the concept of self-supervision for
SAR despeckling, with the idea of learning an image representation
through deep neural network architectures capable of joint despeckling
and compression. Therefore, the resulting approach and the proposed

odel differ from the literature, in that they rely on a previously
unpaired architecture and training strategy. Moreover, the training
nd prediction steps are performed in two different ways to optimize
he joint task, as shown in Figs. 3 and 5. The following subsections
rovide more details on the preprocessing required for the framework
nd the testing and training strategies. It should be noted that unlike
he residual U-Net architecture presented in Dalsasso et al. (2022b),
he variational autoencoder architecture chosen in this work does
ot allow skip connections, which are instrumental in restoring fine
etails. Given the constraints of the compression task, we opted for a
ariational autoencoder architecture augmented with residual blocks
o avoid vanishing gradients during training. This architecture includes
uantization, entropy coding/decoding of the latent space, and a side
yperprior variational autoencoder. This integrated design improves
ompression rates despite the need for an additional side bitstream for
he prior scales, and provides a high degree of adaptability to varying
nput data.

3.2. Pre-processing of the data

Several preprocessing steps must be taken to avoid problems when
sing SAR data with neural networks. One concern is the peculiar-
ty of SAR data, which has an intrinsically high dynamic range and

possible correlation between real and imaginary parts (e.g., caused
by processing the raw data with a squint). Therefore, logarithmic
transformation, spectrum centering, and symmetrization have been
introduced into the preprocessing flow. In addition, the preservation
of point/strong scatterers also required special processing. Concern-
ing ML-linked constraints, two additional operations were introduced:
normalization and image partitioning into patches. These preprocess-
ing steps are presented in the same order as they are used in the
preprocessing chain.

• Symmetrization: It is necessary to ensure that the real and imagi-
nary parts of SLC data are independent. As one will be used as the
input of a neural network, while the other will be the reference on
which the training will be done through a gradient descent. To en-
force such independence, the preprocessing steps considered are
spectrum centering and symmetrization, as described in Dalsasso
et al. (2022b).

• Preservation of point-like scatterers: It is well known that strong
scatterers do not follow the fully developed speckle model: these
bright points exhibit deterministic behavior. Under these con-
ditions, the hypothesis used to train the MERLIN model is no
longer valid. To avoid possible radiometric inaccuracies in our es-
timation, we propose a modification of MERLIN’s self-supervised
training by modifying the input data. Specifically, we first identify
those pixels in the amplitude image that have a value greater than
9 dB and assign the same value, equal to half the power of the
signal, to both the real and imaginary parts. We also note that
additional work on MERLIN (Meraoumia et al., 2023) has shown
that, although the fully developed speckle hypothesis does not
hold for strong scatterers, the algorithm does not introduce a bias
in the estimation. However, we provide experimental evidence
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Fig. 3. Proposed network architecture with hyperprior. Q stands for quantization, AE and AD for the arithmetic encoders and decoders, respectively. The concatenation doubles
the features to allocate the correct number of features needed at test time. The terms 𝑦, 𝑦𝑐 , �̂�𝑐 refer to the estimated, joint concatenated, and quantized latent spaces, respectively,
while 𝑧 and �̂� are the estimated and quantized distributions resulting from the hyper-encoder.
Fig. 4. Residual block used during training and testing as seen in Figs. 3 and 5. The
goal of the residual block is to overcome the problem of vanishing gradients and make
training deep networks easier and more effective (He et al., 2016), mainly thanks to
the skip connections, which allow a more efficient backpropagation.

that the MERLIN approach has worse radiometric resolution for
strong scatterers compared to SAR-BM3D and our approach. We
show this in the experimental section by testing the preservation
of peak intensity values of corner reflectors.

• Log transformation and normalization: To reduce the dynamic
range of the input data, we convert real and imaginary parts to
the log-domain and apply a fixed affine transformation to the 𝑅𝑒2

and 𝐼 𝑚2 images.
• Split into patches: A common practice consists of splitting the

input image into smaller square images, called ‘‘patches’’, which
the neural network will process one by one, or batch by batch. In
the experiments presented here, the patches are 256 × 256 pixels.
Once all the patches of an image are processed, it is possible to
reconstruct an image with the exact dimensions by aggregating
them.

3.3. Training strategy

The network is trained with pairs of real and imaginary parts using
the Noise2Noise approach proposed in MERLIN. The encoder–decoder
architecture includes variational autoencoders and residual blocks. The
training process includes careful hyperparameter selection to ensure
optimal performance and robustness. A scale hyperprior is integrated
into the architecture to improve compression efficiency. It estimates
the parameter 𝜎 of the probability distribution corresponding to each
feature of the latent space. During training, these features are doubled
528 
by a concatenation operation of the latent space with itself. This allows
to allocate the correct number of features for the real and imaginary
parts at test time.

Eventually, quantization and entropy encoding/decoding are ap-
plied.

3.3.1. Encoder/decoder
The encoder module, pictured in light blue in Fig. 3, consists of

several blocks of convolutional layers, with a downsampling operation
followed by GDN layers acting as activation layers, with a residual
block (see Fig. 4) at the end, used to increase the networks receptive
field and its compression-rate performance (Cheng et al., 2020). The
output 𝑦 is the latent representation of input 𝑅𝑒2 or 𝐼 𝑚2, which is
concatenated with itself in the ‘‘concat’’ block, resulting in 𝑦𝑐 . The con-
catenation operation is necessary to train the network to handle latent
spaces twice the size of the input 𝑅𝑒2 or 𝐼 𝑚2, since real and imaginary
latent spaces must simultaneously undergo the same processing: encod-
ing, concatenation, quantization, and transmission to the ground at test
time, as shown in Fig. 5. Similarly, the Decoder module, shown in light
pink in Fig. 3, reverts the process of the Encoder taking the estimated
vector �̂� as input and returns the estimated reflectivity of the 𝑅𝑒2 or 𝐼 𝑚2

input. Note that the latent representations corresponding to the real
and imaginary inputs are concatenated only for compression purposes.
In the reconstruction stage, the two latent spaces are separated again
and processed independently.

3.3.2. Hyper-encoder/hyper-decoder
To further decrease the bitrate, a scale hyperprior was added to the

network (Ballé et al., 2018) represented in the hyper-encoder/decoder
blocks, in dark blue and dark pink, which are composed of convolu-
tions and linear rectifiers. The hyper-encoder takes the concatenated
latent space 𝑦𝑐 and then estimates its distributions, here indicated
as 𝑧, which is then quantized, compressed, and transmitted as side
information. On the receiver side, the estimated quantized �̂� is fed into
the hyper-decoder to estimate �̂�, which is then used to decode 𝑦𝑐 .

3.3.3. Loss function
The loss function optimizes the rate 𝑅 given a distortion term 𝐷.

Thus, minimizing the loss means reducing the rate 𝑅 as much as
possible, given an acceptable distortion 𝐷 of the image. The balance
between rate and distortion can be set in the loss by a weight 𝜆 as
shown in Eq. (3). The rate 𝑅 is measured as the entropy of the latent
space and 𝐷 is a measure of the quality of the reconstruction of the
despeckled image. Therefore, the previous equation becomes:
(𝐼 , 𝐼 𝑚) = 𝑅 + 𝜆𝐷(𝐼𝑘, 𝐼 𝑚𝑘)

= 𝑅(�̂�) + 𝑅(�̂�)

+ 𝜆
∑ 1 log 𝐼𝑘 + exp (2 log|𝐼 𝑚𝑘| − log 𝐼𝑘),

(4)
𝑘 2
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Fig. 5. Proposed ADAM framework: The left side, highlighted in blue in the diagram, represents the modules part of the transmitter, while the blocks on the right side, with a
pink tone, represent the modules on the receiver side. The hyper-decoder appears in both the transmitter and receiver since the estimated scales �̂� must be known by the encoder
and the decoder.
where 𝐷 is the despeckling loss and 𝑅 is the entropy of the latent
spaces �̂� and �̂�. The input 𝑅𝑒2 (or 𝐼 𝑚2) and the estimated reflectivity 𝐼
are log-transformed and normalized. While 𝜆 represents the Lagrangian
multiplier that handles the trade-off between compression rate and
despeckling, with lower values of 𝜆 resulting in higher compression
rates.

The loss function considered corresponds to a training strategy in
which the input of the network 𝑅𝑒2 yields the output reflectivity 𝐼 ,
while the reference used to perform a gradient descent is the squared
imaginary part 𝐼 𝑚2. To train a network on more examples, 𝑅𝑒2 and
𝐼 𝑚2 may be randomly swapped, as shown as the input of the encoder
in Fig. 3, resulting in the loss function (𝐼 , 𝑅𝑒). The rate 𝑅 is the
expected code length (bitrate) of the distributions of 𝑦 and 𝑧, which
are minimized during training using the entropy models 𝑝�̂�(�̂�) and
𝑝�̂�(�̂�) (Ballé et al., 2018). The joint despeckling/distortion loss then
corresponds to the sum over all pixels of the opposite of the log-
likelihood of the marginal distributions, in log-scale (Dalsasso et al.,
2022b).

3.4. Testing strategy

While the self-supervised MERLIN approach (Dalsasso et al., 2022b),
utilizing the real/imaginary diversity of SAR data, lends itself well to
a despeckling task, an obvious drawback when trying to apply it for
compression is the fact that the bitrate is doubled when encoding both
the real and imaginary parts since both are needed to estimate the
final reflectivity. The proposed solution handles this issue by effectively
using a single hyper-encoder and hyper-decoder, shown in Fig. 5,
that is applied to a joint latent space �̂�𝑐 = concat (𝑦𝑅𝑒, 𝑦𝐼 𝑚), after
splitting the complex SLC into real and imaginary parts. This latent
space is then used to estimate the scales �̂� using during arithmetic
encoding/decoding in the hyperprior. The estimation of the reflectivity
is then given by averaging the estimations of the real and imaginary
components and can be formalized as follows:

𝐼 = 1
2
(

𝑓𝜃(𝑅𝑒2) + 𝑓𝜃(𝐼 𝑚2)
)

, (5)

where 𝑓𝜃(𝑅𝑒2) = (dec(split (�̂�𝑐 , 𝑅𝑒)) represents the decoded real com-
ponent of the reflectivity, and 𝑓𝜃(𝐼 𝑚2) = dec(split (�̂�𝑐 , 𝐼 𝑚)) represents
the decoded reflectivity component from the imaginary part. The term
dec(⋅) represents the decoding operation, and split (⋅) the split operation,
which, when applied to the concatenated latent space �̂�𝑐 , returns the
estimated real �̂�𝑅𝑒 = split (�̂�𝑐 , 𝑅𝑒) and imaginary �̂�𝐼 𝑚 = split (�̂�𝑐 , 𝐼 𝑚) latent
space.

4. Experimental results

In order to evaluate the performance of the proposed method with
respect to the state-of-the-art, we performed three types of experiments
aimed at testing different properties of the processed images. In par-
ticular, we tested the spatial resolution, radiometric resolution, and
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the preservation of strong scatterers. To this end, we use different
performance metrics based on local image features that do not rely on
the use of ground truth. Additionally, we build a synthetic ground truth
to complement the results. Summarizing, we will show the results on:

• Despeckling metrics that do not require a ground truth
• Joint despeckling and compression metrics on a synthetic ground

truth
• Preservation of the radiometric resolution of strong scatterers

To properly assess the performance with the state-of-the-art, we
compare the proposed method against the following methods:

• SAR-BM3D (Parrilli et al., 2012): state-of-the-art despeckling al-
gorithm among non-DL-based methods.

• MERLIN (Dalsasso et al., 2022b): DL-based state-of-the-art de-
speckling method.

• MERLIN + JPEG2000 (Taubman et al., 2002): a cascade applica-
tion of these two algorithms functions as the baseline for joint
despeckling and compression. It uses MERLIN to estimate the
reflectivity followed by a JPEG2000 compression.

4.1. Despeckling metrics

To detect biases in the estimated reflectivities, several indicators can
be utilized over homogeneous areas:

• Mean of image (MoI): Should be preserved during filtering.
• Mean of ratio (MoR): The mean of the ratio image should be as

close to 1 to indicate good radiometric preservation.
• Variance of ratio (VoR): If the MoR is then close to 1, a VoR

less than 1 usually indicates under-smoothing, and a value greater
than 1 indicates over-smoothing (Di Martino et al., 2013).

• Ratio image: The ratio image should contain only speckle after
filtering. The presence of structures in the ratio image can be a
sign of overfiltering.

Speckle reduction over homogeneous areas is usually measured in
terms of the equivalent number of looks (ENL):

ENL = 𝜇2
𝑟

𝜎2𝑟
, (6)

where 𝜇𝑟 represents the mean value and 𝜎𝑟 is the standard deviation.
Table 1 summarizes the results on despeckling metrics over the

homogeneous area in Fig. 7(a) highlighted in red. Additionally, in
Fig. 6 we show the ratio images over the area surrounding the German
Aerospace Center (DLR) in Neustrelitz, Germany. The figures show the
result of the processed images in the first row and the ratio images in
the second row.
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Fig. 6. (a)–(f) Zoomed images over the Neustrelitz area corresponding to (a) noisy image, (b) SAR-BM3D, (c) MERLIN, (d) MERLIN+JPEG2000, (e) ADAM with 𝜆 = 10 and (f)
ADAM with 𝜆 = 90. The images below show the corresponding ratio images.
Table 1
Despeckling metrics over homogeneous area.

MoI MoR VoR ENL

Noisy image 0.178 – – 1

ADAM 𝜆 = 10 0.166 0.98 0.91 332.17
ADAM 𝜆 = 40 0.176 0.96 0.85 204.90
ADAM 𝜆 = 90 0.170 0.98 0.86 214.16
MERLIN 0.172 0.96 0.81 118.18
MERLIN+JPEG2000 0.173 0.97 0.85 406.03
SAR-BM3D 0.177 0.99 0.63 10.88

4.2. Joint despeckling and compression metrics

To evaluate the performance of our approach with respect to the
cascade of state-of-the-art despeckling and compression algorithms,
we need to build a synthetic ground truth and test a quantitative
performance metric at different compression rates. To build the syn-
thetic ground truth, we followed the multitemporal approach pro-
posed in Vitale et al. (2021). Specifically, we averaged over time 21
TerraSAR-X co-registered intensity images in the HH polarization. It
is worth noting that while it would have been possible to apply the
same method to a larger set of images to obtain a better reference
image, the larger time span would have increased the probability of
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incorporating temporal changes and thus producing a less reliable
ground truth image. Using this ground truth, we measure the distortion
of joint despeckling and compression methods via the Peak Signal to
Noise Ratio (PSNR), which measures the total distortion introduced by
the compression approach when compared to an uncompressed and
ideally noise-free reference image. For simplicity, we will refer to the
resulting synthetic ground truth shown in Fig. 7(b) as the Hamburg test
site. The PSNR is then defined as follows:

PSNR(𝐴, �̂�) = 10 log10
max(𝐴)

√

MSE(𝐴, �̂�)
, (7)

where MSE represents the mean-square-error estimator, �̂� is the esti-
mated amplitude, and 𝐴 is the reference Hamburg amplitude.

For this experiment, we also consider a noisy baseline computed
by applying JPEG2000 compression directly to the noisy image. We
included it to also consider the inherent ability of a compression
algorithm to perform despeckling. The results of the rate distortion
performance based on the PSNR and the resulting bits-per-pixel (BPP)
over the Hamburg test image are shown in Fig. 8.

4.3. Preservation of the radiometric resolution of strong scatterers

To evaluate the effects of despeckling and compression over strong
scatterers, we considered an area around the DLR site in Neustrelitz,
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Fig. 7. Results over the Hamburg scene: (a) Noisy image with a red square highlighting the homogeneous area used to estimate several performance metrics. (b) The multitemporal
image obtained via averaging. (c) Google Earth image used for visual inspection. (d) MERLIN estimated reflectivity and (e) MERLIN+JPEG2000 estimated reflectivity. (f) Our
approach.
Fig. 8. Rate–distortion performance measured by the PSNR of the network tested on the Hamburg scene, with two additional baselines (Noisy+JPEG2000 and MERLIN+JPEG2000)
for comparison.
Germany, where several corner reflectors are placed for calibration
purposes, as visible in Fig. 9. The computed average of slant range
profiles over these corner reflectors are shown in Fig. 10.

To assess the radiometric preservation in these areas, we used two
intensity contrast measures (Di Martino et al., 2013):

𝐶nn = 10 log10
𝑟CF
𝑟NN

, (8)

𝐶 = 10 log 𝑟CF , (9)
bg 10 𝑟BG
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where:

• 𝑟CF is the reflectivity observed in the corner reflector.
• 𝑟NN is the average reflectivity observed in the eight connected

nearest pixels of the corner reflector.
• 𝑟BG is the average reflectivity of the background.

Eq. (8) measures the contrast between the corner reflector and its
surrounding pixels, and Eq. (9) measures how well the bright points
of the image are preserved compared to the background reflectivity
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Fig. 9. Results over the Neustrelitz scene, containing several corner reflectors used to evaluate the radiometric performance of the proposed method.
Fig. 10. Zooms over the estimated reflectivities of one of the corner reflectors of the Neustrelitz area. (f)–(i) Range profiles of the competing methods and our approach (𝜆 = 10).
Figures (b)–(c), and their corresponding profiles, do not include any compression, while (d) and our method (e) present compressed results.
level. Additionally, we further compute for each method their absolute
deviations with respect to the noisy reference:

𝛥𝐶nn = |𝐶nn − 𝐶 r ef
nn | (10)

𝛥𝐶bg = |𝐶bg − 𝐶 r ef
bg | (11)

The results of these metrics are summarized in Table 2.
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5. Discussion

The results obtained demonstrate the validity of the proposed ap-
proach, showing performance equal to or superior to the state-of-the-
art in terms of both spatial and radiometric resolution. In addition, we
tested a special case of radiometric resolution preservation: strong scat-
terers, e.g. corner reflectors, whose reconstruction is especially critical.
Comparisons were made in terms of despeckling capability, but also
in terms of compression, and we have shown that even compressing
the data to a fraction of a single bit per pixel would still result in
despeckling performance close to or superior to the state-of-the-art.
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Table 2
Corner reflector results.

𝐶nn [dB] 𝛥𝐶nn [dB] 𝐶bg [dB] 𝛥𝐶bg [dB]

Noisy image 26.75 42.54
ADAM 𝜆 = 10 28.25 1.50 42.51 0.03
ADAM 𝜆 = 40 29.11 2.36 43.15 0.61
ADAM 𝜆 = 90 28.21 1.45 42.26 0.29
MERLIN 25.69 1.06 35.90 6.64
MERLIN+JPEG2000 25.43 1.32 35.66 6.88
SAR-BM3D 25.63 1.12 41.60 0.94

In Fig. 6 we visually assess the speckle suppression capabilities of
he compared methods. The MERLIN and MERLIN+JPEG2000 results

show residual noise patterns that correlate with image structures, sug-
esting an overestimation of reflectivity over urban areas. The results
f our method with both 𝜆 = 10 and 𝜆 = 90 show no obvious presence
f errors in the estimation of reflectivity. In fact, in the ratio images in

Figs. 6(j) and 6(k), there is no trace of any structure or obvious pattern,
further confirming the ability of the proposed method to suppress
speckle while preserving all details.

The results of the despeckling metrics over the Hamburg area are
hown in Table 1, which summarizes the MoI, MoR, VoR, and ENL
alues. For MoI, the closer the results were to the original noisy image

mean, the better. For MoR and VoR, the results closest to 1 are consid-
ered the best, indicating proper filtering. For ENL, the higher the value,
he better the performance. For this experiment, the two best results are
ighlighted in black. The results on MoI, MoR, and VoR metrics show
hat the proposed method performs best, by preseving well radiometric

resolution and avoiding introducing biases. Conversely, the highest
ENL was achieved using the MERLIN+JPEG2000 method. If we pair
this result with the visual inspection of Fig. 6(d), we can ascribe the
higher ENL values to oversmoothing, which is an unwanted effect.
This is likely due to the inherent tendency of cascade approaches to
versmooth images.

The preservation of radiometric resolution has been further tested
by visual inspection on the Neustrelitz image in Fig. 9. In this image we
analyzed the behavior on different corner reflectors. Additionally, we
plot the range profile of the corner reflector in the middle of the image
as shown in Fig. 10. Our method shows the best radiometric resolution
reservation, with SAR-BM3D being the second best algorithm. The
esults of the MERLIN+JPEG2000 baseline profile in Fig. 10(h) show

a decrease in the image’s dynamic range due to the compression per-
formed by JPEG2000. The peak value remains the same as the MERLIN
esult in Fig. 10(g). We further computed the metrics 𝐶nn and 𝐶bg
o complement the performance evaluation with a quantitative metric
n corner reflectors. The results, shown in Table 2, also include the

absolute deviations of these metrics for each method with respect to the
noisy reference (Eqs. (10) and (11)). The two best results are those that
how minimal distortion with respect to the noisy image, i.e. the lowest
𝛥, and are highlighted in bold. We analyzed three different corner
eflectors within the Neustrelitz scene. Fig. 10 zooms in on a single

corner reflector, with the resulting range profiles underneath. The
esults associated with the MERLIN+JPEG2000 baseline were obtained
ith approximately 0.3 BPP. In the case of the 𝐶nn metric, our approach
ith 𝜆 = 90 has a 𝛥𝐶nn value of 1.45 dB. MERLIN, on the other hand, a
𝐶nn value on the same corner reflector of 1.06 dB. The ADAM (𝜆 = 10)

result has shown a slightly higher total distortion in 𝛥𝐶nn compared
to the MERLIN+JPEG2000 baseline. However, this ADAM result was
achieved with a bitrate of approximately 0.1 BPP, which is close to
6% less than the bitrate used in the MERLIN+JPEG2000 baseline
or this case. For the 𝐶bg metric, all results related to the proposed
ethod resulted in higher dB values, indicating a higher suppression

f the background reflectivity compared to the original noisy image.
owever, it is worth noting that higher 𝐶bg values do not necessarily
ean better preservation of point-like scatterers, but rather a contrast
ugmentation w.r.t. neighboring background pixels. In this regard, our
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approach with 𝜆 = 10 and 𝜆 = 90 performed the best.
We additionally tested rate-distorsion ratios for all the methods. To

do that we trained our network several times with different 𝜆 values.
his analysis is useful to test the overall joint despeckling and com-
ression performance. The rate-distorsion graphs are shown in Fig. 8.

Based on these results, we found an optimal value for 𝜆 of 90, which
llows to obtain a BPP of around 0.3 and a PSNR value of about 1.5 dB
nd 6 dB higher with respect to the MERLIN+JPEG2000 and noisy
aselines, respectively. The poor performance of the noisy baseline is
xpected given that speckle noise as well as the large dynamic range of
AR data lead to a higher entropy.

The proposed methodology has proven to be the best over the
ntire set of performance metrics presented. Nevertheless, we observed
 variation in performance across the metrics for different 𝜆 values,
uggesting that the choice of 𝜆 should be carefully considered de-
ending on the desired performance. We also expect the need for
ine-tuning or retraining and a new tuning of the hyperparameter 𝜆
hen applying the algorithm to other types of SAR data, which may
iffer in both radiometric and spatial characteristics. In the light of the
esults obtained, we can affirm that the superior performance of our
ethod is due to the simultaneous optimization of the network for the

ompression and despeckling tasks, which together produce a better
AR image representation.

6. Conclusions

In this paper we presented a novel and effective approach to ad-
dress the challenges associated with SAR data processing, particu-
larly in terms of compression and despeckling. Leveraging the self-
supervised machine learning paradigm, specifically the Noise2Noise
framework used in the MERLIN despeckling approach, our proposed
method employs an encoder–decoder architecture optimized to achieve
both high speckle suppression and high compression rate. In partic-
ular, the network architecture employed, with separate encoder and
decoder components for compression and reconstruction, differs from
conventional designs. This design choice ensures the independence
of these two operations, allowing their separate execution at differ-
ent times and locations. The joint optimization strategy, performed
in a self-supervised and multi-objective manner, results in superior
performance. The resulting latent representation of SAR data is ana-
lyzed using a hyperprior encoder to improve compression performance.
Our experiments, conducted on real TerraSAR-X data, show that the
proposed method outperforms state-of-the-art techniques in both de-
speckling and compression tasks. Furthermore, the results demonstrate
the flexibility of our model, which is able to preserve more detail at the
expense of bitrate and vice versa by simply varying the hyperparameter
𝜆. The proposed loss function allows for adaptability in the latent space,
opening avenues for future work to extend the model’s capabilities to
additional tasks, such as segmentation, in a multitask learning fashion.
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