Pulella, Andrea und Sica, Francescopaolo und Prats, Pau (2024) Supervised Multi-Task Learning for Tracking Inland Glacier Flows Using Sentinel-1 TOPS Data. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 417-420. IEEE. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2024-07-07 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10642061. ISBN 979-8-3503-6032-5. ISSN 2153-7003.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10642061
Kurzfassung
Multi-swath SAR interferometry is a powerful tool for assessing sub-wavelength changes over large-scale areas. The azimuth variation of the line of sight (LOS) induces phase jumps between adjacent bursts in the interferograms which contain useful information about the motion. In this work, we present a multitask convolutional neural network that simultaneously decouples the interferometric phase due to displacements in the LOS direction from that due to displacements in the along-track direction, and predicts a proxy for the along-track displacement. We show results using a single pair of Sentinel-1 acquisitions over the inland region of Greenland, where glacier flows occur in the winter season within the revisit time.
elib-URL des Eintrags: | https://elib.dlr.de/206274/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Supervised Multi-Task Learning for Tracking Inland Glacier Flows Using Sentinel-1 TOPS Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10642061 | ||||||||||||||||
Seitenbereich: | Seiten 417-420 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
ISBN: | 979-8-3503-6032-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Synthetic Aperture Radar (SAR), SAR interferometry (InSAR), Sentinel-1, TOPS, surface displacement, Deep Learning (DL), Multitask learning (MTL), convolutional neural networks (CNNs) | ||||||||||||||||
Veranstaltungstitel: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||
Veranstalter : | IEEE GRSS | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||
Hinterlegt von: | Pulella, M.Eng. Andrea | ||||||||||||||||
Hinterlegt am: | 08 Okt 2024 16:12 | ||||||||||||||||
Letzte Änderung: | 08 Okt 2024 16:12 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags