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ABSTRACT

Multi-swath SAR interferometry is a powerful tool for as-
sessing sub-wavelength changes over large-scale areas. The
azimuth variation of the line of sight (LOS) induces phase
jumps between adjacent bursts in the interferograms which
contain useful information about the motion. In this work, we
present a multitask convolutional neural network that simulta-
neously decouples the interferometric phase due to displace-
ments in the LOS direction from that due to displacements in
the along-track direction, and predicts a proxy for the along-
track displacement. We show results using a single pair of
Sentinel-1 acquisitions over the inland region of Greenland,
where glacier flows occur in the winter season within the re-
visit time

Index Terms— Synthetic Aperture Radar (SAR), SAR
interferometry (InSAR), Sentinel-1, TOPS, surface displace-
ment, Deep Learning (DL), Multitask learning (MTL), con-
volutional neural networks (CNNs)

1. INTRODUCTION

Scanning Synthetic Aperture Radar (ScanSAR) [1] and Ter-
rain Observation by Progressive Scans (TOPS) [2] are the two
most widely used multi-swath SAR systems. They both ex-
ploit the burst mode technique to increase the ground cover-
age by cyclically sweeping the elevation antenna beam to illu-
minate different ground regions, called subswaths. Each sub-
swath is a sequence of partially overlapped SAR image units,
named bursts. Multi-swath SAR systems are often used in
differential SAR interferometry (DInSAR) mode for tracking
large-scale displacements over non-stationary scenes, e.g., ar-
eas containing glaciers or affected by earthquakes.The main
challenge of using the burst mode systems is the retrieval of
interferometric outputs along the edges of the bursts. The az-
imuth variation of LOS introduces phase jumps between adja-
cent bursts, which makes phase unwrapping difficult. Ideally,
an unwrapped phase correction should be created to remove
the discontinuities in the interferograms and should be suf-
ficiently accurate to be reapplied to the unwrapped data in
a later step for proper surface displacement estimation. If the
processing bandwidth is large enough to observe the same tar-

get twice on the ground, the phase jumps can be compensated
by implementing a 2-look multi-swath mode [3], but in the
case of 1-look multi-swath systems such as Sentinel-1 (S-1),
other solutions are needed to decouple the displacements in
the LOS direction from those in the flight direction. S-1 is the
first of the five missions designed in the frame of the EC/ESA
Copernicus Programme [4]. Each satellite flights in a near-
polar, sun-synchronous orbit with a 12-day revisit time and
consists of a C-band SAR instrument that mainly operates in
TOPS mode, providing 1-look data with a 250 km swath at a
ground resolution of 5 × 20m in range and azimuth, respec-
tively. In S-1, the azimuth variation of the LOS is due to the
electronic rotation of the antenna beam from backward to for-
ward in the flight direction. As a result, the antenna steering
creates a variable sensitivity to the surface displacement along
the azimuth direction that combines the along-track (AT) and
across-track, or zero-Doppler (ZD), phase contributions. In
this paper, we frame the coupling of AT and ZD phase contri-
butions as a phase source separation problem and we propose
a convolutional neural network (CNN) to jointly separate the
AT and ZD phase contribution and reconstruct the associated
AT deformation. The paper is structured as follows. Section
2 reports two selected published works used for comparison
in the experiments. The proposed methodology, described in
Section 3, is based on the synthetic dataset generation, the
strategy for patch extraction and the structure of the selected
CNN. Section 4 presents the results on a real S-1 IW subswath
and compares the CNN’s prediction with the state-of-the-art
algorithms presented in Section 2. Section 4 presents a brief
outlook and the future development of the presented method-
ology.

2. RELATED WORK

In this section we describe two state-of-the-art techniques
used to compensate for the phase jumps introduced by the
antenna steering in S-1 TOPS mode. Both methodologies
exploit the information hidden in the overlap areas of two
consecutive bursts to retrieve an accurate estimation of the
along-track displacement. In [5], the authors suggest the
usage of a speckle tracking technique to reduce phase discon-
tinuities and increase coherence. An ad hoc Incoherent Cross-



Correlation (ICC) algorithm is developed for non-stationary
scenarios, which aims at tracking the speckle signal with
adaptive spatial averaging. The local offsets measured using
the ICC are used to update the offset matrices and, as a result,
the interferometric phase preserves the sole displacements
in the LOS direction. The along-track displacements can be
retrieved by subtracting the phase retrieved when applying
the speckle tracking from the interferograms estimated using
the standard interferometric chain. The technique described
in [5] performs well in scenarios with high interferometric
coherence, but introduces artifacts at burst edges when the
coherence degrades. The same problem is investigated from
a different perspective in [6], where the authors observe only
the differential interferograms of the overlapped areas. In
particular, they propose an image inpainting technique to fill
the gaps in between, providing a proxy for the phase and mo-
tion in the along-track direction. Although the information
in the overlaps is reliable, the usage of inpainting implies a
relevant computational time and might be meaningless in the
gaps. Additionally, the suggested methodology requires a
2-D phase unwrapping, which might be subject to errors in
complex scenarios.

3. METHODOLOGY

Fig. 1 shows the flowchart of the supervised convolutional
neural network for the interferometric phase source separa-
tion problem.

Fig. 1. Workflow of the proposed CNN. Blocks in green high-
light the innovative aspects of the presented work.

In the following, the three blocks shown in green in 1 are
described in three separate sections. We refer to [7] for the
detailed implementation.

3.1. Synthetic dataset generation

For the generation of the interferograms, we induce a user-
defined desired coherence and the surface displacement as
a noise-free phase in the secondary acquisition. Due to the
complexity in real nonstationary scenarios, we suggest the
synergy of multi-source external displacements. In particu-
lar, we recommend the usage of online ice velocity maps pro-

duced by applying the offset tracking technique over Green-
land [8] together with mathematical displacement maps gen-
erated using the Okada model [9].

3.2. Patch formation

Given a set of synthetic TOPS interferograms using the ap-
proach described in Section 3.1, we extract patches based on
the geometric properties of S-1 TOPS de-bursted subswaths.
In particular, each patch is centered in the phase jump, and
the patch size is chosen to ensure the final aggregation of the
predicted patches and depends on the multilooking window
applied for the interferogram generation.

3.3. CNN model

The proposed CNN, drawn in Fig. 2, is a modified version
of the standard U-Net model for multitask learning purposes.
Four input features, i.e. the real and imaginary parts of the
interferometric phase ϕ, the coherence ρ and the Doppler cen-
troid frequency map fdc are jointly used to estimate three out-
put features in two interconnected branches: the (a) along-
track and (b) zero-Doppler phase, respectively indicated as
ϕ̂at and ϕ̂zd, and the (c) along-track displacement ûat. In par-
ticular, the proposed CNN considers a common encoder-like
block that splits the output feature maps at the bridge layer
into two decoder-like blocks, called phase decoder and along-
track motion decoder, respectively. The former predicts the
AT phase ϕ̂at, then compensates for the input interferometric
phase ϕ for estimating the ZD phase ϕ̂zd. The latter recon-
structs the AT displacement map ûat. The blocks highlighted
in yellow in Fig. 2 refer to the interconnections between the
branches. In particular, the Tat{·} operator followed by the
wrapping block (·)2π reconstructs the AT phase from the es-
timated AT displacement, ûat by using the doppler centroid
frequency fdc. A minimization problem can be employed to
guarantee the consistency between ûat and ϕ̂at.

4. EXPERIMENTAL RESULTS

Training and test stages have been conducted over Greenland
by geographically separating a set of ten Sentinel-1 acqui-
sitions in the inland region. The training data set has been
created considering nine out of ten footprints and inducing
on the secondary SAR image the multi-source displacements
described in Section 3.1 and following the patch formation
strategy described in Section 3.2. The remaining footprint
has been used only for testing the network and in particular
over there a 12-day real interferometric pair has been selected
and processed using the standard steps in SAR interferome-
try without global coregistration refinements. Results using a
real interferometric pair acquired in a time frame of 12 days
during the Winter season over an inland region in Greenland
are summarized in Figure 3. We show a strip from one of



Fig. 2. Proposed network architecture. Yellow blocks address interconnections that guarantee the interaction between the upper
and lower output branches and the upper output and input.

the three S-1 IW subswaths associated with the interferomet-
ric pair. Although in Fig. 3(a) the coherence over an inland
region of Greenland is on average close to 0.7 and almost
uniformly distributed in space, the associated interferometric
phase presents discontinuities in the azimuth direction. From
left to right in Fig. 3(b) we notice that phase jumps at the
beginning of the strip look larger than the ones at the end.
Accordingly, a larger along-track displacement is foreseen at
the beginning of the strip. Fig. 3(d)-Fig. 3(f) report the three
predictions of the proposed neural network, i.e. from top to
bottom the ZD phase ϕ̂zd, the AT phase ϕ̂zd and the AT dis-
placement map ûat. In particular, each output feature is ob-
tained using the aggregation strategy briefly discussed in Sec-
tion 3.2. As expected, the proposed CNN is separating the
input phase of Fig. 3(b) in two contributes, i.e. the quasi-
continuous ZD phase in Fig. 3(d) that contains the displace-
ments occurring in the LOS direction and the AT phase in
Fig. 3(e) that shows the phase jumps occurring at mid-overlap
of the mosaicked phase. The predicted along-track motion in
Fig. 3(f) is linked with the density of fringes in the overlap
areas and is intended as an approximation at mid-burst be-
cause of the different sensitivity along the TOPS burst. In
addition, two sample patches of 256× 256 pixels, denoted as
(i), (ii) in Fig. 3(b), are selected with white squares and pro-
cessed using the two methodologies described in Section 2.
The predicted ZD phases are compared with the result of the
proposed neural network in Fig. 4. Given the phase jumps in
the input data, presented in column (a), the phase correction
applied using the proposed CNN in column (d) is finer than
the ones applied using speckle tracking, reported in column
(b), and image inpainting, shown in column (c), which do not
fully mitigate the discontinuities. Speckle tracking introduces
noisy jumps over the right overlap of patch (i) and on both the
left and right overlaps of patch (ii). Thanks to its DEM-based
implementation, image inpainting appears more robust, but
we can still observe a phase jump residual on the left overlap

of patch (ii).

5. CONCLUSION

This paper presents a supervised multitask learning approach
to separate the phase contributions due to zero-Doppler along-
track displacements in TOPS interferograms. This can be
used to retrieve the along-track deformation of inland glacier
flows. The proposed approach is a promising alternative to
existing speckle tracking approaches, which are much less
sensitive to this type of change. The scientific impact of this
work could be the ability to map Greenland with unprece-
dented accuracy using a single S-1 interferometric pair.
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