Marmanis, Dimitrios and Datcu, Mihai and Esch, Thomas and Stilla, Uwe (2016) Deep Learning Earth Observation Classification Using ImageNet Pre-trained Networks. IEEE Geoscience and Remote Sensing Letters, 13 (1), pp. 105-109. IEEE - Institute of Electrical and Electronics Engineers. DOI: 10.1109/LGRS.2015.2499239 ISSN 1545-598X
![]() |
PDF
1MB |
Official URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7342907
Abstract
Deep learning methods such as convolutional neural networks (CNNs) can deliver highly accurate classification results when provided with large enough data sets and respective labels. However, using CNNs along with limited labeled data can be problematic, as this leads to extensive overfitting. In this letter, we propose a novel method by considering a pretrained CNN designed for tackling an entirely different classification problem, namely, the ImageNet challenge, and exploit it to extract an initial set of representations. The derived representations are then transferred into a supervised CNN classifier, along with their class labels, effectively training the system. Through this two-stage framework, we successfully deal with the limited-data problem in an end-to-end processing scheme. Comparative results over the UC Merced Land Use benchmark prove that our method significantly outperforms the previously best stated results, improving the overall accuracy from 83.1% up to 92.4%. Apart from statistical improvements, our method introduces a novel feature fusion algorithm that effectively tackles the large data dimensionality by using a simple and computationally efficient approach.
Item URL in elib: | https://elib.dlr.de/99809/ | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | |||||||||||||||
Title: | Deep Learning Earth Observation Classification Using ImageNet Pre-trained Networks | |||||||||||||||
Authors: |
| |||||||||||||||
Date: | January 2016 | |||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | |||||||||||||||
Refereed publication: | Yes | |||||||||||||||
Open Access: | Yes | |||||||||||||||
Gold Open Access: | No | |||||||||||||||
In SCOPUS: | Yes | |||||||||||||||
In ISI Web of Science: | Yes | |||||||||||||||
Volume: | 13 | |||||||||||||||
DOI : | 10.1109/LGRS.2015.2499239 | |||||||||||||||
Page Range: | pp. 105-109 | |||||||||||||||
Editors: |
| |||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | |||||||||||||||
ISSN: | 1545-598X | |||||||||||||||
Status: | Published | |||||||||||||||
Keywords: | deep learning, classification, pre-trained networks | |||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||||||||
HGF - Program: | Space | |||||||||||||||
HGF - Program Themes: | Earth Observation | |||||||||||||||
DLR - Research area: | Raumfahrt | |||||||||||||||
DLR - Program: | R EO - Erdbeobachtung | |||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Fernerkundung der Landoberfläche (old) | |||||||||||||||
Location: | Oberpfaffenhofen | |||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Land Surface Remote Sensing Technology Institute > Photogrammetry and Image Analysis | |||||||||||||||
Deposited By: | Adam, Fathalrahman | |||||||||||||||
Deposited On: | 02 Dec 2015 12:40 | |||||||||||||||
Last Modified: | 31 Jul 2019 19:56 |
Repository Staff Only: item control page