elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations

Haus, Rainer und Kappel, David und Arnold, Gabriele (2015) Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations. Planetary and Space Science, 117, Seiten 262-294. Elsevier. doi: 10.1016/j.pss.2015.06.024. ISSN 0032-0633.

[img] PDF (Preprint)
1MB

Offizielle URL: http://dx.doi.org/10.1016/j.pss.2015.06.024

Kurzfassung

A sophisticated radiative transfer model that considers absorption, emission, and multiple scattering by gaseous and particulate constituents over the broad spectral range 0.125-1000 mm is applied to calculate radiative fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km). Responses of these quantities to spectroscopic and atmospheric parameter variations are examined in great detail. Spectroscopic parameter studies include the definition of an optimum spectral grid for monochromatic calculations as well as comparisons for different input data with respect to spectral line databases, continuum absorption, line shape factors, and solar irradiance spectra. Atmospheric parameter studies are based on distinct variations of an initial model data set. Analyses of actual variations of the radiative energy budget using atmospheric features that have been recently retrieved from Venus Express data will be subject of a subsequent paper. The calculated cooling (heating) rates are very reliable at altitudes below 95 (85) km with maximum uncertainties of about 0.25 K/day. Heating uncertainties may reach 3-5 K/day at 100 km. Using equivalent Planck radiation as solar insolation source in place of measured spectra is not recommended. Cooling rates strongly respond to variations of atmospheric thermal structure, while heating rates are less sensitive. The influence of mesospheric minor gas variations is small, but may become more important near the cloud base and in case of episodic SO2 boosts. Responses to cloud mode 1 particle abundance changes are weak, but variations of other mode parameters (abundances, cloud top and base altitudes) may significantly alter radiative temperature change rates up to 50% in Venus' lower mesosphere and upper troposphere. A new model for the unknown UV absorber for two altitude domains is proposed. It is not directly linked to cloud particle modes and permits an investigation of radiative effects regardless of the absorbers’s chemical composition. A globally averaged Bond albedo of Venus of 0.763 is inferred in accordance with previous results. Considering the gaseous UV absorbers SO2 and CO2 shortward of 0.32 mm, the globally averaged deposited solar net flux at the top of atmosphere (TOA) and the outgoing thermal net flux differ by only 1.5 W m-2 around the mean value of 159 W m-2 for the selected initial atmospheric model. Global radiative equilibrium can be achieved by moderate adjustments of cloud mode and UV absorber abundances. Half of the TOA solar net flux is absorbed by atmospheric constituents at altitudes above 63 km. Consideration of the unknown UV absorber provides about 50% more heating at 68 km compared with a neglect of this opacity source. Less than 5% of the incident flux reaches the surface. There is a broad net cooling region between 70 and 80 km with a strong increase of cooling toward the poles. A net radiative temperature change rate gradient is also observed at 65 km where heating occurs at low latitudes. At altitudes above 80 km, net heating dominates the low and mid latitudes, while net cooling prevails at high latitudes leading to a dominant global average net heating that has to be balanced by dynamical processes to maintain the observed thermal structure. The results of energy balance response analyses will serve as reference for ongoing investigations and provide a profound data base to improve the understanding of radiative forcing of atmospheric dynamical processes.

elib-URL des Eintrags:https://elib.dlr.de/99409/
Dokumentart:Zeitschriftenbeitrag
Titel:Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Haus, RainerWestfaelische Wilhelms Univ. MünsterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kappel, DavidDavid.Kappel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Arnold, Gabrielegabriele.arnold (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2015
Erschienen in:Planetary and Space Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:117
DOI:10.1016/j.pss.2015.06.024
Seitenbereich:Seiten 262-294
Verlag:Elsevier
ISSN:0032-0633
Status:veröffentlicht
Stichwörter:Venus; Radiative transfer; Radiative energy balance; Clouds; Unknown UV absorber
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung
Hinterlegt von: Kappel, David
Hinterlegt am:17 Nov 2015 14:01
Letzte Änderung:31 Jul 2019 19:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.