elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Measuring the Uncertainty of Probabilistic Maps Representing Human Motion for Indoor Navigation

Kaiser, Susanna und Garcia Puyol, Maria und Robertson, Patrick (2016) Measuring the Uncertainty of Probabilistic Maps Representing Human Motion for Indoor Navigation. Mobile Information Systems, 2016. Hindawi Publishing Corporation. doi: 10.1155/2016/9595306. ISSN 1574-017X.

[img] PDF - Nur DLR-intern zugänglich
2MB

Offizielle URL: http://dx.doi.org/10.1155/2016/9595306

Kurzfassung

Indoor navigation and mapping has recently become an important field of interest for researchers because global navigation satellite systems (GNSS) are very often unavailable inside buildings. FootSLAM - a SLAM (Simultaneous Localization and Mapping) algorithm for pedestrians based on noisy step measurements - addresses the indoor mapping and positioning problem and can provide accurate positioning in many structured indoor environments. FootSLAM estimates the posterior distributions of both human motion and the map of the environment which is a probabilistic representation of possible human motion at any location in an environment. These maps however, are themselves {\it uncertain} because they are estimated from noisy sensor observations. We believe that the uncertainty of a map and that of human motion can be represented based on information theory. In this paper, we investigate how to compare FootSLAM maps via two entropy metrics. Since collaborative FootSLAM requires the alignment and combination of several individual FootSLAM maps, we also investigate measures that help to align maps that partially overlap. We distinguish between the map entropy conditioned on the history of pedestrian's poses, which is a measure of the uncertainty of the estimated map, and the entropy rate of the pedestrian's steps conditioned on the history of poses and conditioned on the estimated map. Because FootSLAM maps are built on a hexagon grid, the entropy and relative entropy metrics are derived for the special case of hexagonal transition maps. The entropy gives us a new insight on the performance of probabilistic maps.

elib-URL des Eintrags:https://elib.dlr.de/98472/
Dokumentart:Zeitschriftenbeitrag
Titel:Measuring the Uncertainty of Probabilistic Maps Representing Human Motion for Indoor Navigation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kaiser, SusannaSusanna.Kaiser (at) dlr.dehttps://orcid.org/0000-0003-3210-6259NICHT SPEZIFIZIERT
Garcia Puyol, MariaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Robertson, PatrickNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:August 2016
Erschienen in:Mobile Information Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:2016
DOI:10.1155/2016/9595306
Verlag:Hindawi Publishing Corporation
ISSN:1574-017X
Status:veröffentlicht
Stichwörter:FootSLAM, Entropy, Maps, Uncertainty, Indoor Navigation, Pedestrian Dead Reckoning, Simultaneous Localization and Mapping
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation und Navigation
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KN - Kommunikation und Navigation
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben GNSS2/Neue Dienste und Produkte (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation
Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Kaiser, Dr.-Ing. Susanna
Hinterlegt am:17 Okt 2016 10:56
Letzte Änderung:03 Nov 2023 07:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.