Shutin, Dmitriy und Vexler, Boris (2015) A Semismooth Newton Method for Adaptive Distributed Sparse Linear Regression. In: 2015 6th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2015-12-13 - 2015-12-16, Cancun, Mexico. doi: 10.1109/CAMSAP.2015.7383829. ISBN 978-1-4799-1963-5.
PDF
- Nur DLR-intern zugänglich
136kB |
Kurzfassung
The presented work studies an application of a technique known as a semismooth Newton (SSN) method to accelerate the convergence of distributed quadratic programming LASSO (DQP-LASSO) - a consensus-based distributed sparse linear regression algorithm. The DQP-LASSO algorithm exploits an alternating directions method of multipliers (ADMM) algorithm to reduce a global LASSO problem to a series of local (per agent) LASSO optimizations, which outcomes are then appropriately combined. The SSN algorithm enjoys superlinear convergence and thus permits implementing these local optimizations more efficiently. Yet in some cases SSN might experience convergence issues. Here it is shown that the ADMM-inherent regularization also provides sufficient regularization to stabilize the SSN algorithm, thus ensuring a stable convergence of the whole scheme. Additionally, the structure of the SSN algorithm also permits an adaptive implementation of a distributed sparse regression. This allows for an estimation of time-varying sparse vectors, as well as leverages storage requirements for processing streams of data.
elib-URL des Eintrags: | https://elib.dlr.de/98395/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Titel: | A Semismooth Newton Method for Adaptive Distributed Sparse Linear Regression | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 13 Dezember 2015 | ||||||||||||
Erschienen in: | 2015 6th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/CAMSAP.2015.7383829 | ||||||||||||
ISBN: | 978-1-4799-1963-5 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Distributed sparse regression, multi-agent systems, smart networks, Semismooth Newton methods | ||||||||||||
Veranstaltungstitel: | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing | ||||||||||||
Veranstaltungsort: | Cancun, Mexico | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 13 Dezember 2015 | ||||||||||||
Veranstaltungsende: | 16 Dezember 2015 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Verläßliche Navigation (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||
Hinterlegt von: | Shutin, Dmitriy | ||||||||||||
Hinterlegt am: | 10 Feb 2016 15:52 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags