elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Ship Classification in TerraSAR-X Images with Convolutional Neural Networks

Bentes da Silva, Carlos Augusto und Velotto, Domenico und Tings, Björn (2017) Ship Classification in TerraSAR-X Images with Convolutional Neural Networks. IEEE Journal of Oceanic Engineering, 43 (1), Seiten 258-266. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JOE.2017.2767106. ISSN 0364-9059.

[img] PDF
860kB

Offizielle URL: https://doi.org/10.1109/JOE.2017.2767106

Kurzfassung

Synthetic aperture radar (SAR) is an important instrument for oceanographic observations, providing detailed information of oceans`surface and artificial floating structures. Due to advances in SAR technology and deployment of new SAR satellites, an increasing amount of data is available, and the development of efficient classification systems based on deep learning is possible. A deep neural network has improved the state of the art in classification tasks of optical images, but its use in SAR classification problems has been less exploited. In this paper, a full workflow for SAR maritime targets detection and classification on TerraSAR-X high-resolution image is presented, and convolutional neural networks (CNNs) recently proposed in the literature are cross evaluated on a common data set composed of five maritime classes, namely, cargo, tanker, windmill, platform, and harbor structure. Based on experiments and tests, a multiple input resolution CNN model is proposed and its performance is evaluated. Our results indicate that CNNs are efficient models to perform maritime target classification in SAR images, and the combination of different input resolutions in the CNN model improves its ability to derive features, increasing the overall classification score.

elib-URL des Eintrags:https://elib.dlr.de/97930/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:corresponding author: Carlos Bentes
Titel:Ship Classification in TerraSAR-X Images with Convolutional Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bentes da Silva, Carlos AugustoCarlos.Bentes (at) tum.dehttps://orcid.org/0000-0002-5941-334XNICHT SPEZIFIZIERT
Velotto, DomenicoDomenico.Velotto (at) dlr.dehttps://orcid.org/0000-0002-8592-0652NICHT SPEZIFIZIERT
Tings, BjörnBjoern.Tings (at) dlr.dehttps://orcid.org/0000-0002-1945-6433NICHT SPEZIFIZIERT
Datum:16 November 2017
Erschienen in:IEEE Journal of Oceanic Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:43
DOI:10.1109/JOE.2017.2767106
Seitenbereich:Seiten 258-266
Verlag:IEEE - Institute of Electrical and Electronics Engineers
Name der Reihe:Special Issue Marine and Maritime Radar Remote Sensing
ISSN:0364-9059
Status:veröffentlicht
Stichwörter:SAR, ship classification, deep learning, convolutional neural networks
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt), R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:30 Nov 2017 16:49
Letzte Änderung:06 Sep 2019 15:20

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.