Bentes da Silva, Carlos Augusto und Velotto, Domenico und Tings, Björn (2017) Ship Classification in TerraSAR-X Images with Convolutional Neural Networks. IEEE Journal of Oceanic Engineering, 43 (1), Seiten 258-266. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JOE.2017.2767106. ISSN 0364-9059.
PDF
860kB |
Offizielle URL: https://doi.org/10.1109/JOE.2017.2767106
Kurzfassung
Synthetic aperture radar (SAR) is an important instrument for oceanographic observations, providing detailed information of oceans`surface and artificial floating structures. Due to advances in SAR technology and deployment of new SAR satellites, an increasing amount of data is available, and the development of efficient classification systems based on deep learning is possible. A deep neural network has improved the state of the art in classification tasks of optical images, but its use in SAR classification problems has been less exploited. In this paper, a full workflow for SAR maritime targets detection and classification on TerraSAR-X high-resolution image is presented, and convolutional neural networks (CNNs) recently proposed in the literature are cross evaluated on a common data set composed of five maritime classes, namely, cargo, tanker, windmill, platform, and harbor structure. Based on experiments and tests, a multiple input resolution CNN model is proposed and its performance is evaluated. Our results indicate that CNNs are efficient models to perform maritime target classification in SAR images, and the combination of different input resolutions in the CNN model improves its ability to derive features, increasing the overall classification score.
elib-URL des Eintrags: | https://elib.dlr.de/97930/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | corresponding author: Carlos Bentes | ||||||||||||||||
Titel: | Ship Classification in TerraSAR-X Images with Convolutional Neural Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 16 November 2017 | ||||||||||||||||
Erschienen in: | IEEE Journal of Oceanic Engineering | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 43 | ||||||||||||||||
DOI: | 10.1109/JOE.2017.2767106 | ||||||||||||||||
Seitenbereich: | Seiten 258-266 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Name der Reihe: | Special Issue Marine and Maritime Radar Remote Sensing | ||||||||||||||||
ISSN: | 0364-9059 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR, ship classification, deep learning, convolutional neural networks | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt), R - SAR-Methoden | ||||||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||||||
Hinterlegt am: | 30 Nov 2017 16:49 | ||||||||||||||||
Letzte Änderung: | 06 Sep 2019 15:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags