elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Aeroelastic Investigation of an Annular Transonic Compressor Cascade: Numerical Sensitivity Study for Validation Purposes

Chenaux, Virginie Anne und Grueber, Bjoern (2015) Aeroelastic Investigation of an Annular Transonic Compressor Cascade: Numerical Sensitivity Study for Validation Purposes. In: Proceedings of the ASME Turbo Expo. ASME. ASME Turbo Expo Konferenz 2015, 2015-06-15 - 2015-06-19, Montreal, Kanada. doi: 10.1115/GT2015-43297.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The accuracy of flutter or forced response analyses of turbomachinery blade assemblies strongly depends on the correct prediction of the unsteady aerodynamic loads acting on the vibrating blades. This paper presents the aeroelastic numerical results of an annular transonic compressor cascade subjected to harmonic oscillation conditions. The measurements associated were performed in an annular test facility for non-rotating cascades. The aim of this investigation is to get a deeper understanding of the specific characteristics of this test facility as well as improving the flutter prediction procedure and accuracy. For a subsonic and a transonic flow condition, the steady-state blade surface pressure distributions were predicted with two mesh configurations and results were compared to the experimental results. The first configuration omits the geometrical complexity of the experimental model and only models the blade passage. The second mesh configuration includes the cascade’s detailed geometry and cavities. The presence of leakage flows arisen due to the cascade’s slits and cavities are identified and their impact on the main flow field is analyzed and discussed. For the flutter computations, two mesh resolutions were investigated. The global damping predicted with a fine and a coarse mesh was compared, as well as the local pressure amplitudes and phases predicted with both configurations. Results show that even though similar global damping curves are predicted with both mesh resolution, for some IBPAs, local differences exist on the pressure amplitudes and phases. This highlights that only comparing the global damping coefficient, is not sufficient for code validation.

elib-URL des Eintrags:https://elib.dlr.de/97925/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Aeroelastic Investigation of an Annular Transonic Compressor Cascade: Numerical Sensitivity Study for Validation Purposes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Chenaux, Virginie Annevirginie.chenaux (at) dlr.dehttps://orcid.org/0000-0002-9096-182XNICHT SPEZIFIZIERT
Grueber, Bjoernbjoern.grueber (at) mtu.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 Juni 2015
Erschienen in:Proceedings of the ASME Turbo Expo
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2015-43297
Verlag:ASME
Status:veröffentlicht
Stichwörter:numerical flutter predictions, secondary flows, aerodynamic damping, unsteady pressures, sensitivity study, validation.
Veranstaltungstitel:ASME Turbo Expo Konferenz 2015
Veranstaltungsort:Montreal, Kanada
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 Juni 2015
Veranstaltungsende:19 Juni 2015
Veranstalter :ASME
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Triebwerk und Validierungsmethoden (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Experimente
Hinterlegt von: Chenaux, Dr.-Ing. Virginie
Hinterlegt am:13 Okt 2015 09:28
Letzte Änderung:24 Apr 2024 20:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.