elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

An Integrated Loads Analysis Model for Wake Vortex Encounters

Kier, Thiemo (2013) An Integrated Loads Analysis Model for Wake Vortex Encounters. International Forum on Aeroelasticity and Structural Dynamics 2013, 2013-06-24 - 2013-06-26, Bristol, UK.

[img] PDF
2MB

Kurzfassung

When a plane crosses the wake generated by a preceding aircraft, large dynamical loads in the order of the design loads may be induced. Loads analysis models for such wake vortex encounters need to consider aspects important for manoeuvre, as well as gust type responses. If the angle between the path and the trailing vortices is small, the encounter is manoeuvre like due to large induced roll motion. When the vortices are crossed almost perpendicularly, a gust type response is to be expected, where unsteady aerodynamic effects are significant. In 1 a modeling approach of an integrated loads analysis model suitable for wake vortex encounters was presented. This contribution will further investigate the requirements for such flight loads models for wake vortex encounters. One important aspect is, that the bandwidth of the excitation due to gust type wake vortex encounters is considerably larger compared to classical design gusts. Hence, the convergence behavior for high reduced frequencies of the doublet lattice models needs to be examined in more detail. A rational function approximation (RFA) is required to make the unsteady aerodynamics amendable for nonlinear time domain simulations. Previously, a "physical" RFA could significantly improve the results for incompressible flow at high reduced frequencies by explicit approximation of the added mass term. The "physical" RFA scheme is now extended to the compressible regime. The results are compared to the solution of the Possio equation and a velocity potential method for unsteady motion of airfoils in compressible flow. Further, the (time domain) integral loads analysis model is compared to a frequency domain approach. Induced velocities due to a pre-described trajectory for a wake crossing are determined. A subsequent Fourier transformation yields the excitation spectrum for the frequency domain calculations. Various encounter angles with wake vortices are computed and compared to time domain simulations, where the trajectory is determined as a nonlinear response during the simulation. Results show that in some encounter scenarios these nonlinearities can become crucial.

elib-URL des Eintrags:https://elib.dlr.de/97799/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:An Integrated Loads Analysis Model for Wake Vortex Encounters
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kier, ThiemoThiemo.Kier (at) DLR.dehttps://orcid.org/0000-0002-6210-6295NICHT SPEZIFIZIERT
Datum:Juni 2013
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Gust Loads Analysis, Unsteady aerodynamics, Rational function approximation, RFA, Nonlinear time domain simulation, Wake vortex encounter, WVE
Veranstaltungstitel:International Forum on Aeroelasticity and Structural Dynamics 2013
Veranstaltungsort:Bristol, UK
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:24 Juni 2013
Veranstaltungsende:26 Juni 2013
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Systeme und Kabine (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Systemdynamik und Regelungstechnik > Flugzeug-Systemdynamik
Hinterlegt von: Kier, Thiemo
Hinterlegt am:24 Aug 2015 15:45
Letzte Änderung:24 Apr 2024 20:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.