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Abstract: When a plane crosses the wake generated by a preceding aircraft, large
dynamical loads in the order of the design loads may be induced. Loads analysis models
for such wake vortex encounters need to consider aspects important for manoeuvre, as well
as gust type responses. If the angle between the path and the trailing vortices is small,
the encounter is manoeuvre like due to large induced roll motion. When the vortices are
crossed almost perpendicularly, a gust type response is to be expected, where unsteady
aerodynamic effects are significant. In [1] a modeling approach of an integrated loads
analysis model suitable for wake vortex encounters was presented. This contribution
will further investigate the requirements for such flight loads models for wake vortex
encounters. One important aspect is, that the bandwidth of the excitation due to gust
type wake vortex encounters is considerably larger compared to classical design gusts.
Hence, the convergence behavior for high reduced frequencies of the doublet lattice models
needs to be examined in more detail. A rational function approximation (RFA) is required
to make the unsteady aerodynamics amendable for nonlinear time domain simulations.
Previously, a ”physical” RFA could significantly improve the results for incompressible
flow at high reduced frequencies by explicit approximation of the added mass term. The
”physical” RFA scheme is now extended to the compressible regime. The results are
compared to the solution of the Possio equation and a velocity potential method for
unsteady motion of airfoils in compressible flow.

Further, the (time domain) integral loads analysis model is compared to a frequency
domain approach. Induced velocities due to a pre-described trajectory for a wake crossing
are determined. A subsequent Fourier transformation yields the excitation spectrum
for the frequency domain calculations. Various encounter angles with wake vortices are
computed and compared to time domain simulations, where the trajectory is determined
as a nonlinear response during the simulation. Results show that in some encounter
scenarios these nonlinearities can become crucial.

1 INTRODUCTION

Flight loads analysis models need to satisfy different requirements depending if a dy-
namic response due to a manoeuvre or a gust is considered. The manoeuvre model needs
to capture large angles and displacements of the rigid body and nonlinearities in the
aerodynamic data, similarly to flight mechanical simulations. Hence, these models are
usually simulated in the time domain using integration of the underlying ordinary differ-
ential equations. Gust response models need to include unsteady aerodynamics due to
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the rapid change of the inflow conditions. The resulting rigid body response is usually
small compared to manoeuvre. Further, the data for unsteady aerodynamics is typically
computed as a function of reduced frequency. Hence, the loads analysis for the gust case
can be considered as a linear problem, which can be conveniently solved in the frequency
domain.

Occasionally, events beyond the scope of the design load cases specified in the regulations
CS 25 [2] are of interest. In some instances, it is indispensable, to consider a combination
of gusts and manoeuvres. The developement of an integral loads analysis model capable
of handling such cases, has been described in a series of papers [3–5]. The basis of these
models is a suitable set of equations of motion for structural dynamics with large rigid
body motion, and a rational function approximation (RFA) of the frequency dependent
aerodynamic influence coefficient (AIC) matrices. This allows for a transformation of the
unsteady aerodynamics to the Laplace domain and thus is amendable to time domain
integration.

Wake vortex encounters (WVE) are a prime example, where, depending on the encounter
scenario, either large roll angles of the encountering aircraft can be induced, or significant
unsteady aerodynamics effects need to be considered. In [1] the two limiting cases of WVE
scenarios were simulated. An encountering angle of Ψ = 0 deg resulting in large rolling
movement and a perpendicular crossing with an angle of Ψ = 90 deg with significant
unsteadiness of the flow.

The flow field of a WVE is three dimensional, i.e. the gust velocities depend on all three
spatial coordinates, compared to the only one dimensional velocity field as specified for
the discrete gust in paragraph CS 25.341 of the regulations. Further, the gust velocity
field of a WVE has very large spatial gradients.
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Figure 1: velocity profile and amplitude spectrum of a 30ft gust and a typical wake vortex encounter

The consequences are twofold. Firstly, the frequency content of a WVE is significantly
higher compared to even the shortest 1-cos design gust. The left of Figure 1 compares
the 1D velocity profile of a 30 ft design gust with a typical WVE. The right subfigure
depicts their amplitude spectrum, where the 30 ft gust is scaled to yield the same power
spectral density. Clearly, much higher reduced frequencies need to be considered in the
WVE case. Of course, these values are highly scenario dependent and are depicted for
illustration only.
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Secondly, the induced velocities depend nonlinearly on the flight path. The gust velocities
of a pre-computed path might be invalid and an online position and attitude dependent
calculation becomes necessary. These two issues will be addressed in this paper.

A short review of the involved model equations is presented. This is followed by a com-
parison of high reduced frequency aerodynamic methods for thin 2D airfoils, in order to
validate the doublet lattice method (DLM) and the corresponding RFA for the frequency
range in question.

Thereafter, wake vortex crossings with encounter angles ranging from 90 to 10 degrees
are investigated. A transport aircraft with a T-tail was chosen as example, because of its
interesting dynamic response characteristics.

Very often, it is questioned whether the method of rational function approximations is
able to correctly reproduce the frequency domain aerodynamics. To assess the adequacy
of the RFA, fixed path wake vortex encounters were computed in the frequency domain.
The excitation spectrum is set up using a Fourier transformed time signal of the wake
induced velocities using the same routine as used in the nonlinear simulations. AIC
matrices evaluated from the RFA are compared to ones that are directly computed by the
DLM. Inverse Fourier transformation then yields the time responses of the load output
stations.

Finally, the importance of the nonlinear position dependence of the aircraft wrt the wind
field is examined. A time domain simulation was performed. The resulting nonlinear
trajectory was used to calculate a spectrum of the downwash and compared to a pre-
calculated straight trajectory. Again, the responses are compared in the time domain using
inverse Fourier transformation. This allows the validation of the time domain simulation
versus the frequency domain calculation and the influence on the loads of fixed versus
time dependent trajectories.

2 MODEL EQUATIONS FOR LOADS ANALYSIS

2.1 Equations of Motion

The starting point, when setting up the equations of motion (EOM) for a loads analysis
model for a flexible aircraft is a dynamic finite element model (FEM). To reduce the
problem size, the dynamic FEM is reduced using Guyan’s method [6], where condensation
points (g − set) are placed along a loads reference axis. Subsequently, a modal analysis
is carried out and only part of the modal basis covering the frequency range of interest is
retained, to further reduce the computational cost.

The eigenvalues and eigenvectors define the generalized coordinates of the h − set. The
zero eigenvalues represent the rigid body motion. The h−set can be partitioned into rigid
body DOFs (b− set) and flexible part (f − set). The mode shapes Φgb, respectively Φgf

are then used to generalized the equations of motion, which are given in the frequency
domain by{

−ω2

[
Mbb 0
0 Mff

]
+ iω

[
0 0
0 Bff

]
+

[
0 0
0 Kff

]}[
ub
uf

]
=

[
ΦT
gb

ΦT
gf

]
Pext
g (ω). (1)
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A suitable set of equations of motion to account for large rigid body motions and linear
flexibility is derived in the references [7–10], which describe the movement relative to a
”mean axes” body reference frame. Then, the EOM are given as[

mb

(
V̇b + Ωb ×Vb −TbE gE

)
JbΩ̇b + Ωb × (JbΩb)

]
= ΦT

gbP
ext
g (t)

Mff üf + Bff u̇f + Kffuf = ΦT
gfP

ext
g (t),

(2)

where Vb and Ωb are the velocity, respectively angular velocity in the body frame of
reference. The matrix TbE transforms the gravitational vector from an earth fixed (E) to
a body fixed coordinate frame (b).

2.2 Aerodynamic Influence Coefficient Matrices

The major contribution to the excitation forces Pext
g , stem from the aerodynamics. Clas-

sical aerodynamic methods based on potential theory provide Aerodynamic Influence
Coefficient (AIC) matrices, which allow a closed form expression with the equations of
motion (1) and (2).

The Vortex Lattice Method (VLM) [11] discretizes a lifting surface by trapeziodal shaped
elementary wings, so called aerodynamic boxes. The aerodynamic lift is generated by
placing a so called horseshoe vortex along the quarter chord line of such an aerodynamic
box. The circulation strength Γj of the individual vortices is determined using the Biot-
Savart-Law by meeting the flow tangency condition at the 3/4 chord of each box. The

Figure 2: Biot-Savart-Law for a straight vortex filament

induced velocity for a straight vortex filament with the geometrical properties illustrated
in figure 2, is given by

v =
Γ

4π

r1 × r2
|r1 × r2|2 + r2c |r0|2

(
r0 ·

(
r1
|r1|
− r2
|r2|

))
, (3)

where rc is the radius of a viscous core.

Calculating the influence of each horseshoe vortex on every collocation point results in
a matrix, which can be inverted to determine the circulation strengths when satisfying
the flow tangency condition. This allows to formulate a direct relationship between the
normalwash at the control point and the box-pressure.

∆cpj = Qjj wj (4)
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The matrix Qjj is the so called AIC matrix.

To account for a rapidly changing normalwash, unsteady aerodynamics need to be con-
sidered. Therefore, the Doublet Lattice Method [12, 13] (DLM) is employed, which is
an unsteady extension to the steady VLM. The governing flow equation is the unsteady
Prandtl-Glauert equation (5), which differs from its steady counter part by the presence
of the partial derivatives wrt to time.(

1−Ma2∞
) ∂2Φ
∂x2

+
∂2Φ

∂y2
+
∂2Φ

∂z2
−
(

2
Ma∞
a∞

)
∂2Φ

∂x∂t
−
(

1

a2∞

)
∂2Φ

∂t2
= 0 (5)

The Doublet Lattice Method (DLM) provides a harmonic solution for this equation. Fur-
ther, is uses the acceleration potential which is formally equivalent to the velocity potential
equation. Therefore, the same elementary solutions are valid, e.g. the doublet potential.
The acceleration potential readily yields the pressure difference between the upper and
lower surface. Since there is no pressure jump across the wake, it can be omitted in the
modeling process. The final result for the unsteady AIC matrix Qjj(k) has the same
form as its steady counterpart, however additionally it depends on the reduced frequency

k =
cref/2

U∞
ω.

To calculate the pressure difference, the motion or gust induced normal wash at the
three-quarter-chord point (j − set) needs to be determined. The reference point of an
aerodynamic box is its mid point and denoted by the k − set. The matrix Skj converts
the pressures to discrete loads at the mid chord location. The flow conditions can be
expressed as a function of reduced frequency, in terms of the displacements of the k− set.

wj(k) =
(
Dx

jk + ik Dt
jk

)
uk(k), (6)

where Dx
jk is a differentiation in x-direction, i.e., yields the normalwash contribution due

to a change in local angle of attack and ik Dt
jk is a differentiation wrt time, i.e. the

contribution due to a heaving motion.

The interconnection of the aerodynamic grid (k − set) to the structural grid (g − set) is
given by the so called spline matrix Tkg. The interpolation scheme employed to create
this spline matrix, is commonly based on radial basis functions such as e.g. the Infinite
Plate Spline (IPS) [14].

2.3 Rational Function Approximation

The doublet lattice method provides aerodynamic matrices as tabulated values at discrete
reduced frequencies. One possibility to make them amendable for time domain integra-
tion, is the so called rational function approximation (RFA), where the frequency domain
transfer functions are fit with suitable ”rational” terms. These can then be Laplace trans-
formed and cast in state space form. Many flavors of this method have been published
in literature [15–18]. Most of these publications concentrate on approximation of the
generalized aerodynamic matrices Qhh, i.e. the AIC matrices are already post-multiplied
with the differentiation matrices (6) and the modal basis. While this approach reduces
the computational cost considerably due to a smaller problem size, fitting of the AICs
Qjj(k) without multiplication with differentiation matrices has been proposed in [5]:

Qjj(s
∗) = Q0

jj + Q1
jjs
∗ +

np∑
i=1

QLi
jj

s∗I

s∗ + pi
, (7)
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where s∗ = s
(
cref/2

U∞

)
is the Laplace domain equivalent to the reduced frequency k. The

reason for the presence of a second derivative in the classical RFA compared to the present
formulation, is the additional time derivative in the downwash equation (6). The present,
”physical” RFA (7) has several advantages over the approximation of the generalized aero-
dynamic forces. E.g., the fit is not tied to a particular mass case. But more importantly,
the individual terms of the fit allow a physical interpretation. The term Q0

jj represents
the quasi-steady term, Q1

jj is the added mass (in incompressible flow), and the terms
QLi

jj with the predefined poles pi, are responsible for the lagging behavior of the un-
steady flow. In [1] a method for numerically calculation of the incompressible added mass
term was proposed. Further, this fit also allows the consideration of a nonlinear position
dependence of the wind field as demonstrated in [1], since the normalwash wj can be
computed online and fed into a realization of the ordinary differential equations (ODE)
(8) of the unsteady aerodynamics in order to determine the so called lag states xL.

ẋL = U∞
cref/2

R xL + E ẇj (8)

The matrices R and E are stacked diagonal matrices, containing the poles pi, respectively
identity matrices. The splined aerodynamic forces including steady the unsteady parts
are then

Paero
g =

(
Q0

gj wj

)
︸ ︷︷ ︸
steady Ps

g(wj)

+
(
Q1

gj

(
cref/2

U∞

)
ẇj + D xL(ẇj)

)
︸ ︷︷ ︸

unsteady Pu
g(ẇj)

, (9)

where D contains the coefficients QLi
gj from the least squares procedure according to

Roger. With the ”physical” RFA it is possible to discern between the steady and unsteady
contribution of the aerodynamics.

3 HIGH REDUCED FREQUENCY COMPRESSIBLE AIRFOIL AERODY-
NAMICS

When high reduced frequency unsteady aerodynamics are required, as in the case of wake
vortex encounters, the question arises whether the applied methods are able to predict the
unsteady pressure distribution with an acceptable accuracy. The two methods in question
used in the current modeling scheme, are firstly the DLM to generate the aerodynamic
matrices and secondly the RFA to approximate them in the Laplace domain.

In [19] analytical expressions for the pressure distributions of 2D airfoils in unsteady
motion and incompressible flow where derived. In [1] these expressions were compared to
pressures from a DLM and an RFA of the DLM pressures. Remarkably, the extrapolation
of the RFA to very high frequencies gave a better result than a direct DLM calculation.
The structure of the ”physical” RFA was able to fit the added mass term, which is the
dominating term in the high frequency range, where the lower frequencies of the DLM were
still reliable. A direct DLM calculation however would require a very fine discretization
to capture high frequencies.

Now this comparison needs to be extended to compressible flow, i.e. for Mach numbers
greater zero. The physics of compressible flow changes in that respect, that now the pres-
sures travel in waves with a finite speed of sound a∞, whereas in the incompressible case,
the lagging behavior was purely confined to the convection of the wake. For compressible
flow these traveling waves add another source of time dependence. A direct consequence
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of this is that the added mass term is no longer directly proportional to the acceleration
in the fluid, but also has a transfer behavior. The unsteady Prandtl-Glauert equation (5)
can be subjected to the following transformation:

Φ(x, y, z, t) = ϕ(X, Y, Z) · exp

(
ik

Ma2

1−Ma2X + kτ

)
, (10)

which yields as result the Helmholtz equation

∇2ϕ+ κ2ϕ = 0, with κ = k
Ma

1−Ma2 , (11)

which is indicative of the wave like behavior. For steady (k = 0) or incompressible
(Ma = 0) flow, the problem reduces to the Laplacian equation ∇2ϕ = 0.

Unfortunately, analytical solutions for compressible unsteady pressure distributions of air-
foils do not exist, therefore, numerical procedures have to be considered. In [20] a method
for solving Possio’s equation is presented. A computational routine was setup to yield
aerodynamic influence coefficients, with which pressure distributions for arbitrary excita-
tions can be computed. Further, a compressible 2D Velocity Potential Method (VPM)
has been implemented, using fundamental solutions of the two dimensional incarnation
of the Helmholtz equation (11) based on Greens functions Gκ = i

4
H

(1)
0 (κr) for κ > 0 and

G0 = − 1
2π

log r for κ = 0. The velocity potential requires the modelling of the wake,
therefore, the airfoil and the wake are discretized by linear doublet panels. Differentiating
the Greens functions twice, yields the induced velocity due to a point doublet, which is
integrated over the panel length by a Gaussian quadrature. Special attention is required
for the self-influence of the doublet panels, because of the hyper-singular nature of the
kernel. For κ = 0 the doublet panel reduces to double vortices at the panel edges. When
only the airfoil is discretized, this yields the added mass term as derived in [1]. With the
same numerical scheme a compressible non-circulatory term can be calculated for κ > 0
, which corresponds to the added mass for the incompressible case. However, now this
term is frequency dependent.

For the RFA equation (7), this means that the term Q1
jj vanishes and, will have to be

approximated with lag terms instead. The number of poles will have to be increased, since
two different propagation mechanisms at different time scales are at work, the convection
of the wake and the propagation of the waves due to the finite speed of sound. From
which Mach number on, it is useful to drop the added mass term in favor of additional lag
terms, and whether it is beneficial to separately approximate the non-circulatory terms,
is still subject of investigation.

For the numerical comparison an evenly spaced DLM symmetric half model of a straight
wing (AR = 20) with 24 panels in chordwise and 96 panels in spanwise direction was set
up. The inner most strip is used for the comparison to the 2D methods. The Possio solver
uses 51 collocation points in a cosine spacing. The 2D velocity potential method uses 100
panels on the airfoil and a wake-length of 10 chords. Further, an RFA with 15 poles was
applied to Qjj(k) from the Possio solver, which is believed to be the most accurate result.
Figure 3 shows imaginary and real parts of the pressure distributions for heave, pitch and
flap motion. Additionally, the pressure distributions for sinusoidal gusts were computed.
The chosen Mach number is Ma = 0.6 and the displayed reduced frequency is k = 3.0.

7



 

 

RFA

VPM
Possio

DLM

Im
(∆

c p
)

x

gust

R
e
(∆

c p
)

x

Im
(∆

c p
)

x

flap

R
e
(∆

c p
)

x

Im
(∆

c p
)

x

pitch

R
e
(∆

c p
)

x

Im
(∆

c p
)

x

heave
R
e
(∆

c p
)

x

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

−10

−5

0

5

10

−5

0

5

10

15

−20

−10

0

10

20

30

−10

−5

0

5

10

15

20

0

5

10

15

20

25

30

−20

−15

−10

−5

0

5

10

15

Figure 3: complex pressure distributions due to heave, pitch, flap and gust at Ma = 0.6 and k = 3.0

The pressures become quite wavy, as this is already a quite large reduced frequency. This
also explains the requirement for a relatively large amount of poles for an RFA. The DLM
is not quite able to follow in the cases of heave pitch and flap motion. Agreement for the
gust pressures however is very good. For the WVE case this is a favorable result, since the
rigid motions are associated with lower frequency excitation of the structure, whereas the
requirement for high reduced frequencies stem from the gust excitation of the wind-field.

In figure 4 integral values for lift and moment are displayed in the complex plane for
flap and gust excitation. The flap case demonstrates that the RFA is able to follow the
spiraling nature of the values. As expected the moments are more difficult to approximate
than the lift, but overall a very good agreement could be achieved. For the rigid body
motions, the DLM is only accurate up to a reduced frequency of about k = 3.0, but since
the excitation of the structure is confined to lower frequencies, this behavior is deemed
acceptable. It also has to be stressed that the 3D DLM method with a rather coarse grid
spacing is compared to pure 2D methods with a significantly finer discretization.

The gust case is of particular interest for the WVEs and shows a very good agreement
of the DLM and RFA even at high reduced frequencies. The VPM has some problems in
the lower frequency range, probably due to a mismatch of excitation and discretization.

It can be concluded that the DLM is able to provide data suitable for the high frequen-
cies of gust excitation due to a wake vortex encounter. Further, the RFA is capable of
capturing even spiral type behavior in the complex plane, at the expense of additional
poles for the compressible case.
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Figure 4: Lift and moment due to flap and gust in the complex plane up to kmax = 10

4 WAKE VORTEX ENCOUNTERS

As encountering aircraft, a transport aircraft with a T-Tail was chosen. The fact that the
lowest frequency modes are typically the bending and torsion of the tail, rather than the
wing, provides for interesting dynamic responses in wake vortex encounters. The interest
in loads for these types of aircraft was also triggered by flight tests for formation flying [21]
of C-17 Globemaster to reduce fuel consumption, where encounters are probable due to
the proximity to the vortex of the preceding aircraft. Also, in tactical missions such wake
vortex encounters are much more likely compared to commercial aviation, where great
effort is undertaken to predict and avoid wakes of other aircraft [22].

4.1 Parameterization of the Encounter Scenarios

Of course a multitude of encounter scenarios are possible, with different ages of the wake
and different orientation of the encountering aircraft to the wake system. Therefore,
some simplifying assumptions regarding the parameter space are imposed. First the wake
parameters are defined. The wake vortex strength of the generating aircraft is defined by

Γw =
WGnz
ρVGbw

. (12)

After a short time, the trailing vortices released at the wing tips shift inboards due to self
induced velocities. After that, the distance bw between the trailing vortices of the wake
is assumed to remain constant. The core radius for a young but fully developed vortex
is approximately rc ≈ 0.0275 · bw. The three values Γw, bw, and rc constitute the basic
properties of the wake.

The parameters of the encounter are defined by Euler angles (φ, θ, ψ)w of the wake to
orient it in a geodetic frame of reference, and a vertical offset h to adjust the height. The
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encountering aircraft is placed at some distance in a trimmed state with a heading of
ψE = 0. The values θw and φw can be used to mimic a roll angle during the encounter,
respectively a vertical offset between the right and left vortex.

bGbw

Gw

WG

VG

rc

Y

h
Figure 5: Wake encounter scenarios

For the present study θw and φw are set to zero. ψw then corresponds directly to an
encounter angle, as depicted in figure 5. A sweep of encounter angles from 90 deg to
10 deg was simulated. The aerodynamics of the encountering aircraft was modified in
such a way, that the trim angle of attack is zero. This allows an easier interpretation of
the results. The Mach number was set to 0.3 at sea level.

4.2 Frequency Domain Approach for WVE

To asses the accuracy of the rational function approximation, a comparison with the
tabulated unsteady aerodynamics was conducted in the frequency domain. For this com-
parison a frequency domain calculation of wake vortex encounters was set up. As the flow
field of an WVE is three-dimensional as opposed to the one dimensional design gust, the
determination of the excitation spectrum warrants further discussion.

A cut in the y-z plane of the wake induced velocity field is depicted in figure 6. Using

bw

rc viscous core radius

inviscid vortex

Figure 6: induced velocity field by the wake vortex

predefined trajectory data, i.e. the position (x, y, z)E and attitude (φ, θ, ψ)E of the en-
countering aircraft, the wake is transformed from the earth fixed to the aircraft body fixed
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coordinate system. The Biot-Savart equation (3) is then used to determine the induced
normalwash wj(t) of the wake at every control point for each time step. A subsequent
Fourier transformation yields the spectrum of the wake vortex encounter wWVE

j (k). The
maximum frequency and number of frequencies have to be chosen to ensure a satisfactory
resolution. Multiplication with the AIC matrix Qgj(k) for each reduced frequency and the
dynamic pressure, results in a frequency response function for the excitation PWVE

g (ω).
This excitation column is used in the linear EoM (1) and solved for the modal displace-
ments and the loads at defined output stations. Inverse Fourier transformation allows for
comparison with the time domain simulations.

4.3 Unsteady Aerodynamics for WVE

Initially, the vertical offset h is chosen such, that the cores of the vortices directly impact
the horizontal stabilizer of the T-tail. A fixed path frequency domain calculation for the
encounter angle sweep was conducted.

Figure 7 shows the torque moment for the left root of the horizontal tail plane for each
of the encounter angles. Interesting dynamics emerge, e.g. the maximum load levels for
positive torque can occur at the first peak at ψ ≈ 90 deg or at the second peak at around
ψ ≈ 45 deg. It becomes obvious that a comprehensive sweep study is required to deter-
mine the maximum loads. The primary objective of this study is to validate the unsteady
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Figure 7: Torque at left HTP root for RFA, special interpolation and DLM reference unsteady aerody-
namics

aerodynamics during wake vortex encounters. Two different methods for frequency inter-
polation of the AIC matrices Qgj are compared. First, the common interpolation scheme
base on a cubic radial base function as proposed in [23,24]. This is the so called ”special
linear interpolation”, where the imaginary part is divided by the reduced frequency before
interpolation. Since this method has its roots in the PK-flutter method and is targeted
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towards generalized aerodynamic forces, its suitability for response calculations should be
under scrutiny.

Secondly, the RFA is evaluated at different reduced frequencies to determine whether the
method is accurate enough. Basis for both interpolation schemes was a DLM calcula-
tion for 25 reduced frequencies, equally spaced for higher frequencies and bunched for
frequencies from zero to 1.0. The RFA was conducted with 15 poles.

Additionally, reference DLM results were calculated at each of the 1024 frequency points
used for the frequency domain calculation without any interpolation. The results are
shown in figure 7.

Whilst not perfect, the RFA yields similar accuracy to the special interpolation. Both in-
terpolation methods are capable of capturing the load levels accurately, when compared to
the reference results. It can be concluded that the RFA is suited for response calculations
even when high reduced frequencies are excited.

4.4 Position and Attitude Dependence of WVE

So far, the trajectories during the crossing of the wake, were pre-computed. Hence, no
feedback regarding the position and attitude was considered. In [1] the case of Ψ = 0 deg
revealed the importance of considering this dependency due to the large roll angles induced
during the wake encounter.

With a similar sweep study as in the previous paragraph, the limits of these fixed path
calculations are explored. The vertical offset h is chosen to be between the wing plane and
the horizontal tail plane, to increase the rigid aircraft response in pitch. All subsequent
calculations use the unsteady aerodynamics based on the RFA. First, the integral loads
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model was simulated in the time domain. The resulting trajectory was used to generate
an excitation spectrum as described in section 4.2. Finally, a frequency spectrum of a
fixed path trajectory without feedback from the equations of motion is computed. Time
responses for a load station are shown in figure 8.

The difference in loads for the time domain and the frequency domain simulations using
the nonlinear trajectory are negligible, thus validating the ODE integration scheme and
implementation of the integral loads model.

The responses for the fixed path calculation vary significantly. As expected, the differences
are quite large for the acute encounter angles. Somewhat surprising is the considerable
mismatch also for the obtuse encounter angles. This can be attributed to the strong
gradients in the wind field, where even small perturbations of the trajectories can result
in relatively large differences of induced velocities. Figure 9 shows the vortex tracks
relative to the aircraft of the nonlinear response in black and the fixed path in red for
Ψ = 90 deg. The markers depict the location of the double vortex system at t ≈ 3.25 s,
roughly when the maximum loads are reached. Table 1 summarizes the differences of the

Figure 9: vortex trajectories for fixed and nonlinear path of a Ψ = 90 deg encounter

peak loads for the various encounter angles. For encounter angles around 45 deg, the

enc. angle Ψ [deg] 90 80 70 60 50 40 30 20 10
ratio peakloads [%] 12.7 11.7 10.2 6.7 -0.1 2.6 8.9 17.0 14.7

Table 1: ratio of peak loads for non-linear path to fixed path at different encounter angles

differences are smaller, because the maximum loads occur at the second peak, which is
due to the dynamic response of the structure, rather than the impact of the vortex as for
the first peak.

Depending on the scenario, the loads of wake vortex encounters can be significantly in-
fluenced by the nonlinear feedback of the equations of motion, even when only small
perturbations are expected. When acute angles are considered, also large angles become
important and require the consideration of nonlinear equations of motions.

5 CONCLUSIONS

The aim of this paper is to validate the integral load analysis model for wake vortex
encounters proposed in [1], with an emphasis on theoretical and numerical considerations.
In [25] a validation of such loads analysis models with recent flight test results is presented.
The good agreement with flight test results corroborate the loads analysis based on the
current modeling methodology.
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Loads analysis models for wake vortex encounters require an unsteady aerodynamic model
for considerably larger reduced frequencies compared to design gust calculations. Typi-
cally, the DLM is employed as unsteady aerodynamic method to generate frequency de-
pendent AIC matrices. In [1] the DLM results were compared to incompressible unsteady
pressure distributions, which were derived analytically in reference [19]. The present pa-
per extends this comparison to the compressible regime. Since no analytical solutions
for compressible pressure distributions exist, results of the DLM were compared to two
different numerical solvers for compressible flow. Namely, a Possio solver and a velocity
potential method for unsteady thin airfoils. The results show a good agreement up to
moderate reduced frequencies for rigid body type excitations, i.e. heave, pitch and flap
displacements. The 2D rigid body modes are associated with the structural dynamics
and typically have a lower frequency range, when compared to the external excitation.
Albeit, the required range is probably still larger than in the case of the design gust.
The agreement for the sinusoidal gust input however was excellent even up to very high
frequencies. As the requirement for high reduced frequencies originates mainly from the
gust column, the DLM can be considered suitable for wake vortex encounters.

Further, a modification of the ”physical” RFA (7) to address compressibility was pre-
sented. The added mass term disappears in favor of additional lag terms. The non-
circulatory contribution can be determined explicitly by discretizing the airfoil with dou-
blet panels, satisfying the Helmholtz equation (11). The limiting case for Ma = 0 yields
the added mass term presented in [1]. The present RFA is also capable of accurately re-
producing the spiralling behavior of the complex lift and moment for the flap excitations
even for high reduced frequencies.

A frequency domain approach, determining the loads of a fixed path crossing of a wake
vortex was established. The so called ”special linear interpolation”, which is classically
used in response calculations and the ”physical” RFA were compared to a reference DLM
calculation without any interpolation for 1024 frequencies up to kmax = 10. Both inter-
polation schemes yielded a good agreement. The RFA had about the same accuracy as
the special linear interpolation, when compared with the reference results.

Finally, the importance of the feed-back from the equations of motion, regarding the
position and attitude relative to the vortex system was investigated. Nonlinear time
domain simulations were compared to fixed path frequency domain calculations for a sweep
of encounter angles. Remarkable is the fact, that not only for the acute angle, but even for
the 90 degree encounters, a significant difference was found. This is due to large gradients
in the velocity field, where also supposedly small differences can have a large impact on the
resulting loads. It can be concluded that at least for some encounter scenarios, the online
determination of the position relative to the vortices during the simulation is essential.
This adds a nonlinear dependency, which is not tied to the nonlinearity of the equations
of motion, but to the flow field with its large spatial gradients. The consideration of
nonlinear equation of motion becomes necessary, when large roll angles are reached and
the direction of the gravitational forces can no longer be neglected.
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