Fichtelmann, Bernd and Günther, Kurt P and Borg, Erik (2015) Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to SPOT VEGETATION Data. In: 15th International Conference on Computational Science and Its Applications, ICCSA 2015, pp. 177-192. Springer International Publishing Switzerland. 15th International Conference on Computational Science and its Applications - ICCSA 2015, 2015-06-22 - 2015-06-25, Banff, Canada. doi: 10.1007/978-3-319-21410-8_14. ISBN 978-3-319-21409-2 (Print) 978-3-319-21410-8 (Online).
Full text not available from this repository.
Official URL: http://link.springer.com/chapter/10.1007/978-3-319-21410-8_14#
Abstract
Within the ESA CCI “Fire Disturbance” project a dynamic self-learning water masking approach originally developed for AATSR data was modified for MERIS-FR(S) and MERIS-RR data and now for SPOT VEGETATION (VGT) data. The primary goal of the development was to apply for all sensors the same generic principles by combining static water masks on a global scale with a self-learning algorithm. Our approach results in the generation of a dynamic water mask which helps to distinguish dark burned area objects from other different types of dark areas (e.g. cloud or topographic shadows, coniferous forests). The use of static land-water masks includes the disadvantage that land-water masks represent only a temporal snapshot of the water bodies. Regional results demonstrate the quality of the dynamic water mask. In addition the advantages to conventional water masking algorithms are shown. Furthermore, the dynamic water masks of AATSR, MERIS and VGT for the same region are presented and discussed together with the use of more detailed static water masks.
| Item URL in elib: | https://elib.dlr.de/96936/ | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||||||
| Title: | Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to SPOT VEGETATION Data | ||||||||||||||||||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||||||||||||||||||
| Date: | 25 June 2015 | ||||||||||||||||||||||||||||||||||||
| Journal or Publication Title: | 15th International Conference on Computational Science and Its Applications, ICCSA 2015 | ||||||||||||||||||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
| Open Access: | No | ||||||||||||||||||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||
| In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||||||
| DOI: | 10.1007/978-3-319-21410-8_14 | ||||||||||||||||||||||||||||||||||||
| Page Range: | pp. 177-192 | ||||||||||||||||||||||||||||||||||||
| Editors: |
| ||||||||||||||||||||||||||||||||||||
| Publisher: | Springer International Publishing Switzerland | ||||||||||||||||||||||||||||||||||||
| ISBN: | 978-3-319-21409-2 (Print) 978-3-319-21410-8 (Online) | ||||||||||||||||||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||||||||||||||||||
| Keywords: | Self-learning algorithm, Land-water mask, Interpretation, Remote sensing, VGT data, Cloud cover | ||||||||||||||||||||||||||||||||||||
| Event Title: | 15th International Conference on Computational Science and its Applications - ICCSA 2015 | ||||||||||||||||||||||||||||||||||||
| Event Location: | Banff, Canada | ||||||||||||||||||||||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||||||||||||||||||||||
| Event Start Date: | 22 June 2015 | ||||||||||||||||||||||||||||||||||||
| Event End Date: | 25 June 2015 | ||||||||||||||||||||||||||||||||||||
| Organizer: | University of Calgary, Calgary, Canada | ||||||||||||||||||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
| HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
| DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||
| DLR - Research theme (Project): | R - Vorhaben Fernerkundung der Landoberfläche (old) | ||||||||||||||||||||||||||||||||||||
| Location: | Neustrelitz | ||||||||||||||||||||||||||||||||||||
| Institutes and Institutions: | German Remote Sensing Data Center > National Ground Segment German Remote Sensing Data Center > Land Surface | ||||||||||||||||||||||||||||||||||||
| Deposited By: | Fichtelmann, Dr.rer.nat. Bernd | ||||||||||||||||||||||||||||||||||||
| Deposited On: | 04 Aug 2015 10:47 | ||||||||||||||||||||||||||||||||||||
| Last Modified: | 24 Apr 2024 20:02 |
Repository Staff Only: item control page