elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Crown density of over- and understory in mixed forest stands as explained by airborne LiDAR metrics

Latifi, Hooman und Heurich, Marco und Hartig, Florian und Krzystek, Peter und Jehl, Hans und Dech, Stefan (2015) Crown density of over- and understory in mixed forest stands as explained by airborne LiDAR metrics. In: 36th International Symposium on Remote Sensing of Environment. The 36th International Symposium on Remote Sensing of Environment (ISRSE), 2015-05-11 - 2015-05-15, Berlin.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Forest over- and understory, including different woody and herbaceous plant layers provide important habitats in forests. In temperate forests the highest richness in plants is regularly found in the understorey. The understory also provides important food and shelter for other species. Moreover it can be a crucial factor for the fuel available to forest fires. In temperate forests the highest richness in plants is regularly found in the understorey. Mapping understory characteristics is therefore of high interest for forest managers and conservationists. Despite significant progress of remote sensing in forests detecting the understory cover is still a challenge, as passive sensors do not penetrate down to the forest ground layer. 3D metrics extracted from Light Detection and Ranging (LiDAR) provide an alternative. Here, we evaluate this method for describing the vegetation density of over- and understory layers (trees and shrubs as well as the ground herbal vegetation the mixed stands of a large protected area in South-eastern Germany. We used the metrics to describe the coverage degrees of woody layers (trees and shrubs) as well as the ground layer, mainly in combination with the existing habitat types. The Akaike Information Criterion (AIC) was applied to select LiDAR and habitat type predictors to arrive at a parsimonious regression model for each forest layer. The results allowed to identify LiDAR metrics which showed significant correlations with the vegetation density in the different over-and understory layers. Moreover, we found several interactions between the LiDAR metrics and the forest habitat types, suggesting that the relationship between LiDAR predictors and vegetation density depends on forest type. Whereas the canopy and the herb layer showed strong correlations with the applied LiDAR metrics, descriptive power was lower for the intermediate forest layers. The selected regression models were applied for making spatial predictions over the entire study area. This study highlights the value of selected LiDAR metrics in characterizing key forest structure components with wide spatial extend which are important from both the wildlife and the forest management perspectives.

elib-URL des Eintrags:https://elib.dlr.de/96832/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Crown density of over- and understory in mixed forest stands as explained by airborne LiDAR metrics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Latifi, Hoomanhooman.latifi (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heurich, MarcoBavarian Forest National Park, Department of ResearchNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hartig, Florianflorian.hartig (at) biom.uni-freiburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krzystek, PeterMunich University of Applied Sciences, Department of GeoinformaticsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jehl, Hanshans.jehl (at) npv-bw.bayern.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dech, Stefanstefan.dech (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2015
Erschienen in:36th International Symposium on Remote Sensing of Environment
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Name der Reihe:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives)
Status:veröffentlicht
Stichwörter:over- and understory, full waveform LiDAR, linear regression, habitat, Bavarian forests
Veranstaltungstitel:The 36th International Symposium on Remote Sensing of Environment (ISRSE)
Veranstaltungsort:Berlin
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 Mai 2015
Veranstaltungsende:15 Mai 2015
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Hinterlegt von: Wöhrl, Monika
Hinterlegt am:18 Aug 2015 10:22
Letzte Änderung:24 Apr 2024 20:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.