Zhang, Siwei und Raulefs, Ronald und Dammann, Armin und Sand, Stephan (2013) System-Level Performance Analysis for Bayesian Cooperative Positioning: From Global to Local. In: IPIN 2013. IEEE. IPIN 2013, 2013-10-28 - 2013-10-31, Montbeliard, France. doi: 10.1109/IPIN.2013.6817888.
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Cooperative positioning (CP) can be used either to calibrate the accumulated error from inertial navigation or as a stand-alone navigation system. Though intensive research has been conducted on CP, there is a need to further investigate the joint impact from the system level on the accuracy. We derive a posterior Cramer-Rao bound (PCRB) considering both the physical layer (PHY) signal structure and the asynchronous latency from the multiple access control layer (MAC). The PCRB shows an immediate relationship between the theoretical accuracy limit and the effective factors, e.g. geometry, node dynamic, latency, signal structure, power, etc. which is useful to assess a cooperative system. However, for a large-scale decentralized cooperation network, calculating the PCRB becomes difficult due to the high state dimension and the absence of global information. We propose an equivalent ranging variance (ERV) scheme which projects the neighbor's positioning uncertainty to the distance measurement inaccuracy. With this, the effect from the interaction among the mobile terminals (MTs), e.g. measurement and communication can be decoupled. We use the ERV to derive a local PCRB (L-PCRB) which approximates the PCRB locally at each MT with low complexity. We further propose combining the ERV and L-PCRB together to improve the precision of the Bayesian localization algorithms. Simulation with an L-PCRB-aided distributed particle filter (DPF) in two typical cooperative positioning scenarios show a significant improvement comparing with the non-cooperative or standard DPF.
elib-URL des Eintrags: | https://elib.dlr.de/96107/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | System-Level Performance Analysis for Bayesian Cooperative Positioning: From Global to Local | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Oktober 2013 | ||||||||||||||||||||
Erschienen in: | IPIN 2013 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IPIN.2013.6817888 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Radio Navigation ; Dynamic Cooperative Positioning ; Posterior Cramér Rao Bound ; Bayesian Approach ; Distributed Particle Filtering | ||||||||||||||||||||
Veranstaltungstitel: | IPIN 2013 | ||||||||||||||||||||
Veranstaltungsort: | Montbeliard, France | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 28 Oktober 2013 | ||||||||||||||||||||
Veranstaltungsende: | 31 Oktober 2013 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben GNSS2/Neue Dienste und Produkte (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
Hinterlegt von: | Zhang, Siwei | ||||||||||||||||||||
Hinterlegt am: | 29 Apr 2015 11:24 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags