Asam, Sarah (2014) Potential of high resolution remote sensing data for leaf area index derivation using statistical and physical models. Dissertation, Julius-Maximilians-Universität Würzburg.
Full text not available from this repository.
Official URL: http://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/10839
Item URL in elib: | https://elib.dlr.de/95887/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Dissertation) | ||||||||
Title: | Potential of high resolution remote sensing data for leaf area index derivation using statistical and physical models | ||||||||
Authors: |
| ||||||||
Date: | 2014 | ||||||||
Refereed publication: | No | ||||||||
Open Access: | No | ||||||||
Number of Pages: | 235 | ||||||||
Status: | Published | ||||||||
Keywords: | Blattflächenindex; Optische Fernerkundung; Strahlungstransport | ||||||||
Institution: | Julius-Maximilians-Universität Würzburg | ||||||||
Department: | Lehrstuhl für Fernerkundung | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | German Remote Sensing Data Center | ||||||||
Deposited By: | Wöhrl, Monika | ||||||||
Deposited On: | 08 Apr 2015 09:30 | ||||||||
Last Modified: | 25 Jul 2018 08:39 |
Repository Staff Only: item control page