Pedersen, Niels Lovmand und Manchon, Carles Navarro und Badiu, Mihai-Alin und Shutin, Dmitriy und Fleury, Bernard Henry (2015) Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models. Signal Processing, 115, Seiten 94-109. Elsevier. doi: 10.1016/j.sigpro.2015.03.013. ISSN 0165-1684.
PDF
1MB |
Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0165168415001140
Kurzfassung
In sparse Bayesian learning (SBL), Gaussian scale mixtures (GSMs) have been used to model sparsity-inducing priors that realize a class of concave penalty functions for the regression task in real-valued signal models. Motivated by the relative scarcity of formal tools for SBL in complex-valued models, this paper proposes a GSM model - the Bessel K model - that induces concave penalty functions for the estimation of complex sparse signals. The properties of the Bessel K model are analyzed when it is applied to Type I and Type II estimation. This analysis reveals that, by tuning the parameters of the mixing pdf different penalty functions are invoked depending on the estimation type used, the value of the noise variance, and whether real or complex signals are estimated. Using the Bessel K model, we derive a sparse estimator based on a modification of the expectation–maximization algorithm formulated for Type II estimation. The estimator includes as a special instance in the algorithms proposed by Tipping and Faul [1] and Babacan et al. [2]. Numerical results show the superiority of the proposed estimator over these state-of-the-art estimators in terms of convergence speed, sparseness, reconstruction error, and robustness in low and medium signal-to-noise ratio regimes.
elib-URL des Eintrags: | https://elib.dlr.de/95622/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Sparse Estimation Using Bayesian Hierarchical Prior Modeling for Real and Complex Linear Models | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 20 März 2015 | ||||||||||||||||||||||||
Erschienen in: | Signal Processing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 115 | ||||||||||||||||||||||||
DOI: | 10.1016/j.sigpro.2015.03.013 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 94-109 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0165-1684 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Sparse Bayesian learning; Sparse signal representations; Underdetermined linear systems; Hierarchical Bayesian modeling; Sparsity-inducing priors | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben GNSS2/Neue Dienste und Produkte (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||||||
Hinterlegt von: | Shutin, Dmitriy | ||||||||||||||||||||||||
Hinterlegt am: | 05 Okt 2015 16:05 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 19:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags