Bentes da Silva, Carlos Augusto und Velotto, Domenico und Lehner, Susanne (2015) Target Classification in Oceanographic SAR Images with Deep Neural Networks: Architecture and Initial Results. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015, Seiten 3703-3706. IEEE Xplore. IGARSS 2015, 2015-07-26 - 2015-07-31, Milan, Italy. doi: 10.1109/IGARSS.2015.7326627. ISBN 978-1-4799-7929-5.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7326627
Kurzfassung
Synthetic Aperture Radar (SAR) provides detailed information of Ocean's surface and man-made floating structures. Advances in the SAR technology and the deployment of new SAR satellites have contributed to an increasing number of remote sensing data available. Handle this large amount of data with human operators is infeasible. Therefore, the use of automated tools to process remote sensing images, identify regions of interest, and select relevant information are needed. The use of neural networks to solve SAR image classification problems is well known. The typical architecture consists of a shallow feed-forward neural network with an input layer, a hidden layer, and an output layer. This type of neural network combined with back-propagation training algorithm is able to solve complex problems in SAR image analysis. However, this architecture is unable to take advantage of unlabeled data during its training process, and in many cases the input features need to be carefully tuned in order to reduce the overall network complexity. This paper proposes the application of Deep Neural Networks (DNN) to perform oceanographic-object classification.
elib-URL des Eintrags: | https://elib.dlr.de/95526/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | published online; http://www.igarss2015.org/ | ||||||||||||||||
Titel: | Target Classification in Oceanographic SAR Images with Deep Neural Networks: Architecture and Initial Results | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2015 | ||||||||||||||||
Erschienen in: | Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2015 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2015.7326627 | ||||||||||||||||
Seitenbereich: | Seiten 3703-3706 | ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
ISBN: | 978-1-4799-7929-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR Oceanography, Machine Learning, Deep Neural Networks, Automatic Target Identification | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2015 | ||||||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 26 Juli 2015 | ||||||||||||||||
Veranstaltungsende: | 31 Juli 2015 | ||||||||||||||||
Veranstalter : | IEEE Geoscience and Remote Sensing Society | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Entwicklung und Erprobung von Verfahren zur Gewässerfernerkundung (alt) | ||||||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung Institut für Methodik der Fernerkundung | ||||||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||||||
Hinterlegt am: | 13 Apr 2015 15:58 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags