elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Endoscopic Chemiluminescence Measurements as a Robust Experimental Tool in High-Pressure Gas Turbine Combustion Tests

Goers, Simon and Witzel, Benjamin and Heinze, Johannes and Stockhausen, Guido and van Kampen, Jaap and Schulz, Christof and Willert, Christian and Fleing, Christian (2014) Endoscopic Chemiluminescence Measurements as a Robust Experimental Tool in High-Pressure Gas Turbine Combustion Tests. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014-06-16 - 2014-06-20, Düsseldorf. doi: 10.1115/GT2014-26977. ISBN 978-0-7918-4569-1.

Full text not available from this repository.

Official URL: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1907992

Abstract

The development process for gas turbine combustion systems includes single-burner high-pressure combustion tests as an important validation step. In these tests the performance of a combustor is investigated at realistic gas turbine conditions. Measurement techniques that are typically used in these tests include mass flow meters, thermocouples, pressure transducers, and probes for exhaust-gas composition measurements. These measurement techniques, however, do not provide direct information of the flame behavior. Chemiluminescence measurements have proven to being a valuable and robust technique to close this gap. This paper summarizes the results of chemiluminescence measurements performed at Siemens full-scale high-pressure single-burner combustion test rigs at the German Aerospace Center (DLR) in Cologne, Germany. To minimize the impact of the measurement system on the experiment, the optical access to the test rigs was provided by a water-cooled endoscopic probe. The probe was located in a side-wall downstream of the burner, viewing upstream towards the burner outlet. The probe was successfully operated up to full engine pressure and flame temperatures of approximately 1900 K. For the detection of the chemiluminescence signal different approaches were applied: • Spectral analysis of the chemiluminescence signal were done by using an USB spectrometer. • For flame imaging up to two intensified CCD cameras were applied. In front of the cameras various combinations of optical filters were installed to selectively record the respective chemiluminescent species (OH*, CH*, CO2*). • For studies with special focus on combustion dynamics an intensified high-speed CMOS camera was used. High-repetition-rate measurements were used for identifying the shapes of flame modes. • Acoustic pressure oscillations inside the combustion chamber were recorded by pressure transducers simultaneously to the camera images. This allows the pressure oscillations to be correlated with flame fluctuations during post-processing. Generally, the robustness of endoscopic chemiluminescence measurements was successfully demonstrated in numerous tests at realistic gas turbine conditions. The applied imaging setups provided new information about the connection between the flame position and NOx emissions as well as the correlation of flame fluctuations and pressure oscillations. Hence, they have become a valuable experimental tool to improve the evaluation and understanding of the combustor performance. Future work will focus on further improvement of quantitative evaluations by compensation of line-of-sight image integration, reabsorption of OH* by OH, and beam steering.

Item URL in elib:https://elib.dlr.de/94596/
Document Type:Conference or Workshop Item (Speech)
Title:Endoscopic Chemiluminescence Measurements as a Robust Experimental Tool in High-Pressure Gas Turbine Combustion Tests
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Goers, SimonUniversität Duisburg-EssenUNSPECIFIEDUNSPECIFIED
Witzel, BenjaminSiemens AGUNSPECIFIEDUNSPECIFIED
Heinze, JohannesUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Stockhausen, GuidoUNSPECIFIEDhttps://orcid.org/0000-0001-5893-5835UNSPECIFIED
van Kampen, JaapSiemens AGUNSPECIFIEDUNSPECIFIED
Schulz, ChristofIVG, Universität Duisburg-EssenUNSPECIFIEDUNSPECIFIED
Willert, ChristianUNSPECIFIEDhttps://orcid.org/0000-0002-1668-0181UNSPECIFIED
Fleing, ChristianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:June 2014
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Volume:4B
DOI:10.1115/GT2014-26977
Page Range:V04BT04A048
Series Name:ASME Proceedings, Combustion, Fuels and Emissions
ISBN:978-0-7918-4569-1
Status:Published
Keywords:combustion, chemiluminescence, high pressure, endoscopic devices, gas turbines, combustion diagnostics
Event Title:ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
Event Location:Düsseldorf
Event Type:international Conference
Event Start Date:16 June 2014
Event End Date:20 June 2014
Organizer:International Gas Turbine Institute
HGF - Research field:Energy
HGF - Program:Efficient Energy Conversion and Use (old)
HGF - Program Themes:Power Plants (old)
DLR - Research area:Energy
DLR - Program:E VG - Combustion and Gas Turbine Technologies
DLR - Research theme (Project):E - Combustion and Power Plant Systems (old), E - Gas Turbine (old)
Location: Köln-Porz
Institutes and Institutions:Institute of Propulsion Technology > Engine Measurement Systems
Institute of Propulsion Technology > Combustor Test
Deposited By: Willert, Dr.phil. Christian
Deposited On:16 Jan 2015 14:46
Last Modified:24 Apr 2024 20:00

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.