elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission

Caraccio, A. and Poulet, Lucie and Hintze, P. and Miles, J.D. (2014) Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission. IAC 2014, 2014-09-29 - 2014-10-03, Toronto, Canada. (Unpublished)

[img] PDF
612kB

Abstract

Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Center’s (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSC’s TtG technology.

Item URL in elib:https://elib.dlr.de/94132/
Document Type:Conference or Workshop Item (Speech)
Title:Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Caraccio, A.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Poulet, LucieUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hintze, P.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Miles, J.D.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2014
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Unpublished
Keywords:BLSS, EDEN Initiative, Greenhouse Modules
Event Title:IAC 2014
Event Location:Toronto, Canada
Event Type:international Conference
Event Start Date:29 September 2014
Event End Date:3 October 2014
Organizer:IAF
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Research under Space Conditions
DLR - Research area:Raumfahrt
DLR - Program:R FR - Research under Space Conditions
DLR - Research theme (Project):R - Projekt :envihab (old)
Location: Bremen
Institutes and Institutions:Institute of Space Systems > System Analysis Space Segment
Deposited By: Schubert, Daniel
Deposited On:06 Jan 2015 12:13
Last Modified:24 Apr 2024 19:59

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.