elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Water formation in early solar nebula: I. Quasi-stationary cloud core

Tornow, Carmen und Gast, Philipp und Pelivan, Ivanka und Kupper, Stefan und Kührt, Ekkehard und Motschmann, Uwe (2014) Water formation in early solar nebula: I. Quasi-stationary cloud core. Planetary and Space Science, 98, Seiten 216-232. Elsevier. doi: 10.1016/j.pss.2013.12.010. ISSN 0032-0633.

[img] PDF (Water formation in early solar nebula: I.) - Nur DLR-intern zugänglich
2MB

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0032063313003346

Kurzfassung

An important condition for the habitability of rocky planets is the existence of water in or on their upper lithospheric layer. We will show that the available amount of this water depends on the conditions in the parental cloud the planetary system has formed from. These clouds can be giant gas clusters with a complex structure associated with bright nebulae or smaller gas aggregations appearing as quiescent dark regions. It has been observed that in both cloud types young stars are formed in dense cores consisting mainly of molecular hydrogen. We assume that the physical and chemical state of these cores, which defines the initial conditions of star formation, is also representative for the initial state of the solar nebula 4.6 Giga years ago. Based on this assumption, we have developed a radial symmetric model to study the physical and chemical evolution of the earliest period of the solar nebula described by a cloud core with 1.01 solar mass and a radius of about 104 AU. The evolution of this core is simulated for a few Mega years, while its molecular gas being in a hydrostatic equilibrium. The related radial distributions of the gas and dust temperature can be calculated from thermal balance equations. These equations depend on the radial profile of the dust to gas density which follows from the continuity equation of the dust phase. The velocity of the dust grains is influenced by the radiation pressure of the local interstellar radiation field and the gas drag. The resulting temperature and dust profiles derived from our model depend on the grain size distribution of the dust. These profiles determine the chemical evolution of the cloud core. It is shown that in the dust phase about 10^6 to 10^7 times more water is produced than in the gas phase. Further, the total mass of the water formed in the core varies only marginally between 0.11 and 0.12 wt% for a life time of the core between 1 and 6.5 Mega years, respectively. Roughly 84% of the oxygen atoms are incorporated into water molecules, if the intensity of the radiation field is about 1 Habing. The number of oxygen atoms decreases to 77% if this intensity triples. The water amount produced in the gas phase depends stronger on the interstellar radiation field and the living time of the core than the water amount formed on dust. For the 1 Habing radiation intensity the size distribution of the dust grains has nearly no influence. Finally, a number of species representing compounds mainly formed in the dust or in the gas phase was selected (H2O, CO, etc.) in order to use them for a validation of our model. Thereto, we have compared the abundances of these compounds simulated with the model to the related data from observations published in the literature. For almost all cases except N2H+ a sufficient agreement was found.

elib-URL des Eintrags:https://elib.dlr.de/94115/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:http://adsabs.harvard.edu/abs/2014P%26SS...98..216T
Titel:Water formation in early solar nebula: I. Quasi-stationary cloud core
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tornow, CarmenCarmen.Tornow (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gast, Philippphilipp.gast (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pelivan, Ivankaivanka.pelivan (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kupper, Stefanstefan.kupper (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kührt, EkkehardEkkehard.Kuehrt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Motschmann, UweTU BraunschweigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:August 2014
Erschienen in:Planetary and Space Science
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:98
DOI:10.1016/j.pss.2013.12.010
Seitenbereich:Seiten 216-232
Verlag:Elsevier
ISSN:0032-0633
Status:veröffentlicht
Stichwörter:Solar nebula; Hydrostatic gas sphere; Interstellar dust; Astrochemistry: water formation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt ROSETTA Instrumente (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Asteroiden und Kometen
Hinterlegt von: Tornow, Dr.rer.nat. Carmen
Hinterlegt am:07 Jan 2015 09:56
Letzte Änderung:06 Nov 2023 14:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.