elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Evaluation of Feature Selection and Model Training Strategies for Object Category Recognition

Ali, Haider und Marton, Zoltan-Csaba (2014) Evaluation of Feature Selection and Model Training Strategies for Object Category Recognition. In: IEEE International Conference on Intelligent Robots and Systems, 5036- 5042. International Conference on Intelligent Robots and Systems (IROS), 2014-09-14 - 2014-09-18, Chicago, Illinois. doi: 10.1109/IROS.2014.6943278. ISSN 1552-3098.

[img] PDF
489kB

Offizielle URL: http://www.iros2014.org/

Kurzfassung

Several methods for object category recognition in RGB-D images have been reported in literature. These methods are typically tested under the same conditions (which we can consider a ``domain'' in a restricted sense) such as viewing angles, distances to the object as well as lightening conditions on which they are trained. However, in practical applications one often has to deal with previously unseen domains. In this paper, we investigate the effect of domain change on the performance of object category recognition methods. We use the public RGB-D Object Dataset from Lai~\textit{et~al.} \cite{RGBD_ICRA2011} for training, and for testing we introduce the DLR-RGB-D dataset, representing a similar, but different domain. The data present in both datasets holds various object instances grouped into general object categories. Object category detectors are trained using the objects of one domain and tested on the objects of the other domain. We then explored how do different 3D features perform when the model trained on the source domain is applied on the target domain, and evaluated two feature selection strategies. In our experiments we show that a domain change can have significant impact on the model's accuracy, and present results for improving the results by increasing the variability of the objects in the training domain. Finally, we discuss the relevance of the descriptors and the properties they capture.

elib-URL des Eintrags:https://elib.dlr.de/93644/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Evaluation of Feature Selection and Model Training Strategies for Object Category Recognition
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ali, HaiderHaider.Ali (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Marton, Zoltan-CsabaZoltan.Marton (at) dlr.dehttps://orcid.org/0000-0002-3035-493XNICHT SPEZIFIZIERT
Datum:September 2014
Erschienen in:IEEE International Conference on Intelligent Robots and Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/IROS.2014.6943278
Seitenbereich:5036- 5042
ISSN:1552-3098
Status:veröffentlicht
Stichwörter:object categorization, cross-domain learning, feature selection, domain adaptation, RGBD object databases
Veranstaltungstitel:International Conference on Intelligent Robots and Systems (IROS)
Veranstaltungsort:Chicago, Illinois
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 September 2014
Veranstaltungsende:18 September 2014
Veranstalter :IEEE/RSJ
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Multisensorielle Weltmodellierung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Marton, Dr. Zoltan-Csaba
Hinterlegt am:08 Jan 2015 11:41
Letzte Änderung:24 Apr 2024 19:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.