Ali, Haider und Marton, Zoltan-Csaba (2014) Evaluation of Feature Selection and Model Training Strategies for Object Category Recognition. In: IEEE International Conference on Intelligent Robots and Systems, 5036- 5042. International Conference on Intelligent Robots and Systems (IROS), 2014-09-14 - 2014-09-18, Chicago, Illinois. doi: 10.1109/IROS.2014.6943278. ISSN 1552-3098.
PDF
489kB |
Offizielle URL: http://www.iros2014.org/
Kurzfassung
Several methods for object category recognition in RGB-D images have been reported in literature. These methods are typically tested under the same conditions (which we can consider a ``domain'' in a restricted sense) such as viewing angles, distances to the object as well as lightening conditions on which they are trained. However, in practical applications one often has to deal with previously unseen domains. In this paper, we investigate the effect of domain change on the performance of object category recognition methods. We use the public RGB-D Object Dataset from Lai~\textit{et~al.} \cite{RGBD_ICRA2011} for training, and for testing we introduce the DLR-RGB-D dataset, representing a similar, but different domain. The data present in both datasets holds various object instances grouped into general object categories. Object category detectors are trained using the objects of one domain and tested on the objects of the other domain. We then explored how do different 3D features perform when the model trained on the source domain is applied on the target domain, and evaluated two feature selection strategies. In our experiments we show that a domain change can have significant impact on the model's accuracy, and present results for improving the results by increasing the variability of the objects in the training domain. Finally, we discuss the relevance of the descriptors and the properties they capture.
elib-URL des Eintrags: | https://elib.dlr.de/93644/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Evaluation of Feature Selection and Model Training Strategies for Object Category Recognition | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | September 2014 | ||||||||||||
Erschienen in: | IEEE International Conference on Intelligent Robots and Systems | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IROS.2014.6943278 | ||||||||||||
Seitenbereich: | 5036- 5042 | ||||||||||||
ISSN: | 1552-3098 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | object categorization, cross-domain learning, feature selection, domain adaptation, RGBD object databases | ||||||||||||
Veranstaltungstitel: | International Conference on Intelligent Robots and Systems (IROS) | ||||||||||||
Veranstaltungsort: | Chicago, Illinois | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 14 September 2014 | ||||||||||||
Veranstaltungsende: | 18 September 2014 | ||||||||||||
Veranstalter : | IEEE/RSJ | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||
Hinterlegt von: | Marton, Dr. Zoltan-Csaba | ||||||||||||
Hinterlegt am: | 08 Jan 2015 11:41 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 19:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags