Gleich, Dusan und Singh, Jagmal und Planinsic, Peter (2015) Parametric and Nonparametric Methods for SAR Patch Scene Categorization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (4), Seiten 1623-1634. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2014.2352337. ISSN 1939-1404.
PDF
1MB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6924707
Kurzfassung
This paper presents synthetic aperture radar (SAR) image categorization based on feature descriptors within the discrete wavelet transform (DWT) domain using nonparametric and parametric features. The first and second moments, Kolmogorov Sinai entropy and coding gain, are used for the nonparametric features within an oriented dual tree complex wavelet transform (2D ODTCWT). A Gauss–Markov random field (GMRF), triplet Markov random field (TMRF), and autobinomial model (ABM) are used for feature extraction using a parametric approach within an image domain. A single parameter of GMRF, TMRF, or ABM is used for characterizing an entire patch; therefore, higher model orders (MOs) are used. A database with 2000 images representing 20 different classes with 100 images per class is used for estimating classification efficiency. A supervised learning stage is implemented within a support vector machine (SVM) using 10% and 20% of the test images per class. The experimental results showed that the nonparametric features achieved better results when compared to the parametric features.
elib-URL des Eintrags: | https://elib.dlr.de/92780/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | Article#: 2352337 | ||||||||||||||||
Titel: | Parametric and Nonparametric Methods for SAR Patch Scene Categorization | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 22 Mai 2015 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 8 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2014.2352337 | ||||||||||||||||
Seitenbereich: | Seiten 1623-1634 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Computational modeling Discrete wavelet transforms Entropy Feature extraction Synthetic aperture radar, Discrete wavelet transforms, Entropy, Feature extraction, Synthetic aperture radar | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 01 Dez 2014 18:13 | ||||||||||||||||
Letzte Änderung: | 19 Nov 2021 20:28 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags