DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Abschlussbericht NGT II Keramische Bremse

Kütemeyer, Marius and Hönig, Sandrine (2014) Abschlussbericht NGT II Keramische Bremse. DLR-Interner Bericht. DLR-IB 435-2014/76. (Unpublished)

Full text not available from this repository.


Fibre reinforced ceramic composites are promising candidates for application under severe loading and environments. Previously invented for heat shields and high temperature resistant components for space vehicles, these materials were further developed to be applied as brake discs for automotive use. From the 1990s ceramic brake discs have been developed at the German Aerospace Center in detail, resulting in industrial use for automotive and, quite recently, for aeronautic application. Typically, ceramic brake discs used in automobiles consist of short carbon fibre reinforced SiC. Cut carbon fibres are combined with a polymer matrix and pressed to a disk-shaped CFRP preform. After high temperature treatment under inert atmosphere, a porous carbon-carbon preform is achieved. The final carbon fibre reinforced SiC brake disc is obtained after liquid silicon infiltration (LSI process) at high temperature. Thereby the silicon (Si) is infiltrated via capillary forces only, and a SiSiC-matrix is built up by a chemical reaction of Si and a small part of the carbon as well as by filling the remaining porosity with Si. By controlling the process parameters, especially during the CFRP preform manufacture, the microstructure can be adapted in order to provide e.g. an abrasion resistant friction surface with high volume content of SiC for high hardness and a carbon fibre containing core for enhanced toughness and for the prevention of brittle failure. In serial use for sports and luxury cars, these brake discs are well established today and their typical properties will be presented. Apart from this successful application also ceramic brake discs for trains and other high performance brake systems are under development. Due to the high mechanical loads, lightweight brake discs for trains favourably are based on a long fibre reinforcement design which usually is realized by the use of two dimensional carbon fibre fabrics which are layed up in various orientations in order to provide sufficient and homogeneous tension strength in circumferential direction as well as high intralaminar shear strength for a safe joining of the brake disc to the driveline. Different C/C-SiC materials and brake disc demonstrators have been developed and tested in cooperation with industry, proofing the high potential of ceramic brake discs for trains, due to increased brake performance and savings of weight and energy consumption, compared to metal discs. For further increase of load capacity a fibre orientation in 45° along the tangential direction is favourable. Therefore novel approaches are investigated with new fibre preform technologies like tailored fibre placement. Here, continuous fibres are oriented accurately, resulting in C/C-SiC materials with enhanced load capability and increased thermal conductivity. The material properties are presented and compared to previous results based on fabric reinforced materials, and the application potential of the novel, enhanced brake discs is discussed.

Item URL in elib:https://elib.dlr.de/92428/
Document Type:Monograph (DLR-Interner Bericht)
Title:Abschlussbericht NGT II Keramische Bremse
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Kütemeyer, Mariusmarius.kuetemeyer (at) dlr.deUNSPECIFIED
Hönig, Sandrinesandrine.hoenig (at) dlr.deUNSPECIFIED
Date:15 November 2014
Refereed publication:No
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Keywords:Keramische Bremse, C/C-SiC, TFP, Gewebe, Wärmeleitfähigkeit, AFPB
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Transport
HGF - Program Themes:Terrestrial Vehicles (old)
DLR - Research area:Transport
DLR - Program:V BF - Bodengebundene Fahrzeuge
DLR - Research theme (Project):V - Next Generation Train III (old)
Location: Stuttgart
Institutes and Institutions:Institute of Structures and Design > Ceramic Composite Structures
Deposited By: Kütemeyer, Marius
Deposited On:23 Dec 2014 17:13
Last Modified:23 Dec 2014 17:13

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.