elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Comparative Studies of Conductive Nanostructures and Activation Properties in Solid Polymer Electrolytes

Friedrich, K. Andreas und Hiesgen, Renate und Morawietz, Tobias (2014) Comparative Studies of Conductive Nanostructures and Activation Properties in Solid Polymer Electrolytes. 15th ISE Topical Meeting, 27. Apr. - 30. Apr. 2014, Niagara Falls, Canada.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

Solid polymer electrolytes are a key component in fuel cell as ion conducting barrier between the two electrochemical reactive electrodes and their conductivity significantly determines the performance of the cells. The conductivity of the electrolyte membranes is typically based on a nanoscale phase separation that results in an ionic conductive network and a stabilizing matrix. In sulfonated ionomers the sulfonic acid groups are solvated and a hydrophilic proton conducting aqueous ionic phase is formed in a self-assembling process upon solidification of the membrane. The hydrophobic polymer back-bones which may be perfluorinated as in case of Nafion-type molecules or aromatic as in case of multi-block copolymers provide mechanical stabilization. Consequently, the membrane properties at or close to the surface may differ from the bulk of the membrane and its structure and conductivity are crucial as interface between membrane and electrode/catalyst. Different types of sulfonated membranes, perfluorinated Nafion® (long-side chain molecules) and Aquivion® (short side chain molecules) membranes, and aromatic multiblock copolymer membrane named JST (JSR Corp., Japan) have been investigated. Beside the investigation of surfaces freshly cut cross section from Nafion and Aquivion samples have been examined. For analysis material-sensitive and conducting atomic force microscopy was used to map local adhesion forces, stiffness, deformation, conductivity and surface potential with nanoscale resolution. The following issues will be addressed: 1. Change of the conductivity upon current flow. 2. Size and distribution of conductive area at the surface for various membranes. 3. Existence and thickness of a surface layer for different membranes. 4. Difference in membranes structure close to the surface. 5. Ionic structure of the bulk for Nafion® and Aquivion®.

elib-URL des Eintrags:https://elib.dlr.de/92085/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Comparative Studies of Conductive Nanostructures and Activation Properties in Solid Polymer Electrolytes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Friedrich, K. Andreasandreas.friedrich (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hiesgen, Renaterenate.hiesgen (at) hs-esslingen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Morawietz, TobiasHochschule EsslingenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 April 2014
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Polymer membrane, Nafion, conductivity
Veranstaltungstitel:15th ISE Topical Meeting
Veranstaltungsort:Niagara Falls, Canada
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:27. Apr. - 30. Apr. 2014
Veranstalter :International Society of Electrochemistry
HGF - Forschungsbereich:Energie
HGF - Programm:Rationelle Energieumwandlung und Nutzung (alt)
HGF - Programmthema:Brennstoffzelle (alt)
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E EV - Energieverfahrenstechnik
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Prozesse (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Elektrochemische Energietechnik
Hinterlegt von: Friedrich, Prof.Dr. Kaspar Andreas
Hinterlegt am:19 Nov 2014 15:18
Letzte Änderung:19 Nov 2014 15:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.