elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Future design for imperfection sensitive composite launcher structures

Degnhardt, Richard (2014) Future design for imperfection sensitive composite launcher structures. 51th Israel Annual Conference on Aerospace Sciences, 2014-02-19 - 2014-02-20, Tel Aviv.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The Space industry demand for lighter and cheaper launcher transport systems. The running EU project DESICOS (New Robust DESIgn Guideline for Imperfection Sensitive COmposite Launcher Structures), which started in January 2012, contributes to these aims by a new design approach for imperfection sensitive composite launcher structures, exploiting the worst imperfection more efficiently, by the Single Pertubation Load Approach [1]. Currently, imperfection sensitive shell structures prone to buckling are designed according the NASA SP 8007 guideline using the conservative lower bound curve. The guideline dates from 1968, and the structural behaviour of composite material is not considered appropriately, in particular since the imperfection sensitivity of shells made from such materials depends on the lay-up design. The buckling loads of CFRP structures may vary by a factor of about 3 just by changing the lay-up. This is not considered in the NASA SP 8007, which allows designing only so called "black metal" structures. Here is a high need for a new precise and fast design approach for imperfection sensitive composite structures which allows significant reduction of structural weight and design cost. For most relevant architectures of cylindrical and conical launcher structures (monolithic, sandwich- without and with holes) DESICOS investigates a combined methodology from the Single Perturbation Load Approach and a specific stochastic approach which guarantees an effective and robust design (cf. Figure 1). A recent investigation demonstrated, that an axially loaded unstiffened cylinder, which is disturbed by a large enough single perturbation load, is leading directly to the design buckling load 45% higher compared with the respective NASA SP 8007 design [2]. Within DESICOS the new methods are further developed, validated by tests and summarized in a handbook for the design of imperfection sensitive composite structures. The potential will be demonstrated within different industrially driven use cases. This paper presents the objectives, the main results and first results of the DESICOS project.

elib-URL des Eintrags:https://elib.dlr.de/90350/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Future design for imperfection sensitive composite launcher structures
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Degnhardt, RichardDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 Februar 2014
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Composite structures, Launcher structures, Design, Buckling, Stability, Imperfection Sensitivity
Veranstaltungstitel:51th Israel Annual Conference on Aerospace Sciences
Veranstaltungsort:Tel Aviv
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 Februar 2014
Veranstaltungsende:20 Februar 2014
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Raumfahrzeugsysteme - HL-Primärstrukturen für Orbitale Systeme (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Faserverbundleichtbau und Adaptronik > Strukturmechanik
Hinterlegt von: Degenhardt, Prof. Dr. Richard
Hinterlegt am:25 Aug 2014 11:15
Letzte Änderung:24 Apr 2024 19:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.