Gijsberts, Arjan und Atzori, Manfredo und Castellini, Claudio und Müller, Henning und Caputo, Barbara (2014) Movement Error Rate for Evaluation of Machine Learning Methods for sEMG-Based Hand Movement Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22 (4), Seiten 735-744. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TNSRE.2014.2303394. ISSN 1534-4320.
PDF
1MB |
Kurzfassung
There has been increasing interest in applying learning algorithms to improve the dexterity of myoelectric prostheses. In this work, we present a large-scale benchmark evaluation on the second iteration of the publicly released NinaPro database, which contains surface electromyography data for 6 DOF force activations as well as for 40 discrete hand movements. The evaluation involves a modern kernel method and compares performance of three feature representations and three kernel functions. Both the force regression and movement classification problems can be learned successfully when using a nonlinear kernel function, while the exp- kernel outperforms the more popular radial basis function kernel in all cases. Furthermore, combining surface electromyography and accelerometry in a multimodal classifier results in significant increases in accuracy as compared to when either modality is used individually. Since window-based classification accuracy should not be considered in isolation to estimate prosthetic controllability, we also provide results in terms of classification mistakes and prediction delay. To this extent, we propose the movement error rate as an alternative to the standard window-based accuracy. This error rate is insensitive to prediction delays and it allows us therefore to quantify mistakes and delays as independent performance characteristics. This type of analysis confirms that the inclusion of accelerometry is superior, as it results in fewer mistakes while at the same time reducing prediction delay.
elib-URL des Eintrags: | https://elib.dlr.de/89781/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Movement Error Rate for Evaluation of Machine Learning Methods for sEMG-Based Hand Movement Classification | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2014 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Neural Systems and Rehabilitation Engineering | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 22 | ||||||||||||||||||||||||
DOI: | 10.1109/TNSRE.2014.2303394 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 735-744 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1534-4320 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Electromyography, machine learning, prosthetics. | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
Hinterlegt von: | Castellini, Dr. Claudio | ||||||||||||||||||||||||
Hinterlegt am: | 17 Okt 2014 15:10 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Jun 2023 12:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags