Schäfer, Bernd und Carvalho Leite, Alexandre (2014) Planetary Robotics Exploration Activities at DLR. Journal of Computational and Applied Mathematics. Elsevier. doi: 10.1007/s40314-014-0122-2. ISSN 0377-0427.
PDF
3MB |
Offizielle URL: http://link.springer.com/article/10.1007/s40314-014-0122-2
Kurzfassung
Intelligent mobility, agile manipulability, and increased autonomy are key technologies to guarantee for long-range and efficient surface exploration on Earth’s Moon and on planets. In order to increase the scientific output of a rover mission it is very necessary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mobile vehicle with an appropriate number ofwheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. Moreover, a shift from a traditional bogie and wheel design to more agile wheel-legged combined systems seems to be beneficial to reach the goals. DLR’s Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modelling, optimization, and simulation tasks. We have developed efficient software tools to simulate the rover driveability performance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on slopes, where wheel and grouser geometry plays a dominant role. Moreover, first rover designs by best engineering intuitions has to be supported by means of optimization tools from the very beginning. By this, we optimize structural, geometric, and inertia parameters and we compare various kinematics suspension concepts, while making use of realistic cost functions like mass and consumed energy minimization, static stability, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used in terrestrial mobile systems. The advanced rover design approach is applicable for lunar as well as Martian surface exploration purposes.
elib-URL des Eintrags: | https://elib.dlr.de/88807/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Planetary Robotics Exploration Activities at DLR | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | März 2014 | ||||||||||||
Erschienen in: | Journal of Computational and Applied Mathematics | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1007/s40314-014-0122-2 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISSN: | 0377-0427 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Planetary exploration, planetary rovers, autonomy,, mobility, manipulability, legged vehicles, optimization, terramechanics | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - On-Orbit Servicing [SY] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||
Hinterlegt von: | Schäfer, Dr.rer.nat. Bernd | ||||||||||||
Hinterlegt am: | 03 Dez 2014 21:46 | ||||||||||||
Letzte Änderung: | 06 Nov 2023 14:28 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags