elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Sparse adaptive multipath tracking for low bandwidth ranging applications

Schneckenburger, Nicolas und Shutin, Dmitriy (2014) Sparse adaptive multipath tracking for low bandwidth ranging applications. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014-05-04 - 2014-05-09, Florenz, Italien. doi: 10.1109/ICASSP.2014.6854841.

[img] PDF
2MB

Kurzfassung

In this paper a novel algorithm for estimation and tracking of multipath components for range estimation using signals with low bandwidth is discussed. In multipath rich environments ranging becomes a challenging problem when used with low bandwidth signals: unless multipath interference is resolved, large ranging errors are typical. In this work the estimation and tracking of individual multipath components is studied. The new technique combines sparse Bayesian learning and variational Bayesian parameter estimation with Kalman filtering. While the former is used to detect and estimate the individual components, the Kalman filtering is used to track the estimated signals. Two assumptions are compared: independence of multipath components, typical for classical multipath estimation schemes, versus correlation between the propagation paths. The later has been found to improve component tracking and estimation at the cost of increased computational complexity. The performance of the algorithm is investigated using synthetic, as well as real measurement data collected during flight trials. Significantly improved ranging performance can be obtained as compared to the standard correlation-based ranging.

elib-URL des Eintrags:https://elib.dlr.de/88493/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Sparse adaptive multipath tracking for low bandwidth ranging applications
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schneckenburger, Nicolasnicolas.schneckenburger (at) dlr.dehttps://orcid.org/0000-0001-9952-7555NICHT SPEZIFIZIERT
Shutin, DmitriyDmitriy.Shutin (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Mai 2014
Erschienen in:IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Ja
DOI:10.1109/ICASSP.2014.6854841
Status:veröffentlicht
Stichwörter:OFDM, Sparse bayesian learning
Veranstaltungstitel:2014 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Veranstaltungsort:Florenz, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:4 Mai 2014
Veranstaltungsende:9 Mai 2014
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Kommunikation, Navigation und Überwachung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Schneckenburger, Nicolas
Hinterlegt am:16 Jul 2014 10:14
Letzte Änderung:24 Apr 2024 19:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.