Frank, Korbinian und Roeckl, Matthias und Pfeifer, Tom und Robertson, Patrick (2013) Segmenting Bayesian networks for intelligent information dissemination in collaborative, context-aware environments with Bayeslets. Pervasive and Mobile Computing, Specia. Elsevier. doi: 10.1016/j.pmcj.2013.11.003. ISSN 1574-1192.
PDF (Post-Print)
1MB |
Offizielle URL: http://www.sciencedirect.com/science/article/pii/S157411921300151X
Kurzfassung
With ever smaller processors and ubiquitous Internet connectivity, the pervasive computing environments from Mark Weiser’s vision are coming closer. For their context-awareness, they will have to incorporate data from the abundance of sensors integrated in everyday life and to benefit from continuous machine-to-machine communications. Along with huge opportunities, this also poses problems: sensor measurements may conflict, processing times of logical and statistical reasoning algorithms increase non-deterministically polynomially or even exponentially, and wireless networks might become congested by the transmissions of all measurements. Bayesian networks are a good starting point for inference algorithms in pervasive computing, but still suffer from information overload in terms of network load and computation time. Thus, this work proposes to distribute processing with a modular Bayesian approach, thereby segmenting complex Bayesian networks. The introduced “Bayeslets” can be used to transmit and process only information which is valuable for its receiver. Two methods to measure the worth of information for the purpose of segmentation are presented and evaluated. As an example for a context-aware service, they are applied to a scenario from cooperative vehicular services, namely adaptive cruise control.
elib-URL des Eintrags: | https://elib.dlr.de/86501/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Segmenting Bayesian networks for intelligent information dissemination in collaborative, context-aware environments with Bayeslets | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 Dezember 2013 | ||||||||||||||||||||
Erschienen in: | Pervasive and Mobile Computing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | Specia | ||||||||||||||||||||
DOI: | 10.1016/j.pmcj.2013.11.003 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 1574-1192 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Vehicle-to-vehicle; Information dissemination; Information assessment; Bayeslet; Bayesian network; Context inference; Machine-to-machine communication | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - VABENE (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
Hinterlegt von: | Frank, Korbinian | ||||||||||||||||||||
Hinterlegt am: | 27 Jan 2014 16:15 | ||||||||||||||||||||
Letzte Änderung: | 06 Nov 2023 15:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags