Risto, Koiva und Barbara, Hilsenbeck und Claudio, Castellini (2013) Evaluating subsampling strategies for sEMG-based prediction of voluntary muscle contractions. In: Proceedings of ICORR - International Conference on Rehabilitation Robotics, Seiten 1-7. IEEE. ICORR 2013, 2013-06-24 - 2013-06-26, Seattle, WA, USA. doi: 10.1109/ICORR.2013.6650492.
|
PDF
1MB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6650492
Kurzfassung
In previous work we showed that some human Voluntary Muscle Contractions (VMCs) of high interest to the prosthetics community, namely finger flexions/extensions and thumb rotation, can be effectively predicted using muscle activation signals coming from surface electromyography (sEMG). In this paper we study the effectiveness of various subsampling strategies to limit the size of the training data set, with the aim of extending the approach to an online VMC-prediction system whose main application will be force-controlled hand prostheses. We performed an experiment in which 10 ablebodied participants flexed and extended their fingers according to a visual stimulus, while muscle activations and VMCs (represented as synergistic fingertip forces) were gathered using sEMG electrodes and a custom-built measurement device. A Support Vector Machine (SVM) was trained on a fixed-sized subset of the collected data, obtained using seven different subsampling strategies. The SVM was then tested on subsequent new data. Our experimental results show that two subsampling strategies attain a prediction error as low as 6% to 12%, which is comparable to the error values obtained in our previous work when the entire data set was used and processed offline.
elib-URL des Eintrags: | https://elib.dlr.de/85234/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Evaluating subsampling strategies for sEMG-based prediction of voluntary muscle contractions | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2013 | ||||||||||||||||
Erschienen in: | Proceedings of ICORR - International Conference on Rehabilitation Robotics | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/ICORR.2013.6650492 | ||||||||||||||||
Seitenbereich: | Seiten 1-7 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | electromyography, machine learning, rehabilitation, prosthetics | ||||||||||||||||
Veranstaltungstitel: | ICORR 2013 | ||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 24 Juni 2013 | ||||||||||||||||
Veranstaltungsende: | 26 Juni 2013 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||
Hinterlegt von: | Castellini, Dr. Claudio | ||||||||||||||||
Hinterlegt am: | 16 Dez 2013 18:15 | ||||||||||||||||
Letzte Änderung: | 05 Jun 2024 12:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags