Castellini, Claudio und Tommasi, Tatiana und Noceti, Nicoletta und Odone, Francesca und Caputo, Barbara (2011) Using Object Affordances to Improve Object Recognition. IEEE Transactions on Autonomous Mental Development, 3 (3), Seiten 207-215. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TAMD.2011.2106782. ISSN 1943-0604.
PDF
930kB |
Offizielle URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5699912
Kurzfassung
The problem of object recognition has not yet been solved in its general form. The most successful approach to it so far relies on object models obtained by training a statistical method on visual features obtained from camera images. The images must necessarily come from huge visual datasets, in order to circumvent all problems related to changing illumination, point of view, etc. We hereby propose to also consider, in an object model, a simple model of how a human being would grasp that object (its affordance). This knowledge is represented as a function mapping visual features of an object to the kinematic features of a hand while grasping it. The function is practically enforced via regression on a human grasping database. After describing the database (which is publicly available) and the proposed method, we experimentally evaluate it, showing that a standard object classifier working on both sets of features (visual and motor) has a significantly better recognition rate than that of a visual-only classifier.
elib-URL des Eintrags: | https://elib.dlr.de/84982/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Using Object Affordances to Improve Object Recognition | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2011 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Autonomous Mental Development | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 3 | ||||||||||||||||||||||||
DOI: | 10.1109/TAMD.2011.2106782 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 207-215 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1943-0604 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | computer vision, machine learning, grasping, affordances | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (bis 2012) | ||||||||||||||||||||||||
Hinterlegt von: | Castellini, Dr. Claudio | ||||||||||||||||||||||||
Hinterlegt am: | 16 Dez 2013 18:05 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 19:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags