Shutin, Dmitriy und Wang, Wei und Jost, Thomas (2013) Incremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals. In: 2015 International Conference on Sampling Theory and Applications, SampTA 2015. 10th International Conference on Sampling Theory and Applications, 2013-07-01 - 2013-07-05, Bremen, Deutschland.
PDF
- Nur DLR-intern zugänglich
184kB |
Kurzfassung
This work discuses a novel algorithm for joint sparse estimation of superimposed signals and their parameters. The proposed method is based on two concepts: a variational Bayesian version of the incremental sparse Bayesian learning (SBL)- fast variational SBL - and a variational Bayesian approach for parameter estimation of superimposed signal models. Both schemes estimate the unknown parameters by minimizing the variational lower bound on model evidence; also, these optimizations are performed incrementally with respect to the parameters of a single component. It is demonstrated that these estimations can be naturally unified under the framework of variational Bayesian inference. It allows, on the one hand, for an adaptive dictionary design for FV-SBL schemes, and, on the other hand, for a fast superresolution approach for parameter estimation of superimposed signals. The experimental evidence collected with synthetic data as well as with estimation results for measured multipath channels demonstrate the effectiveness of the proposed algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/82752/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Incremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2013 | ||||||||||||||||
Erschienen in: | 2015 International Conference on Sampling Theory and Applications, SampTA 2015 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Multipath estimation, Sparse Bayesian learning | ||||||||||||||||
Veranstaltungstitel: | 10th International Conference on Sampling Theory and Applications | ||||||||||||||||
Veranstaltungsort: | Bremen, Deutschland | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 1 Juli 2013 | ||||||||||||||||
Veranstaltungsende: | 5 Juli 2013 | ||||||||||||||||
Veranstalter : | Jacobs University Bremen | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | ATM und Flugbetrieb (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L AO - Luftverkehrsmanagement und Flugbetrieb | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Kommunikation, Navigation und Überwachung (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||
Hinterlegt von: | Shutin, Dmitriy | ||||||||||||||||
Hinterlegt am: | 18 Sep 2013 09:45 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 19:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags