Rückstieß, Thomas und Osendorfer, Christian und Smagt van der, Patrick (2012) Minimizing Data Consumption with Sequential Online Feature Selection. International Journal of Machine Learning and Cybernetics, April 2012. Springer. doi: 10.1007/s13042-012-0092-x. ISSN 1868-8071.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
In most real-world information processing problems, data is not a free resource. Its acquisition is often expensive and time-consuming. We investigate how such cost factors can be included in supervised classification tasks by deriving classification as a sequential decision process and making it accessible to reinforcement learning. Depending on previously selected features and the internal belief of the classifier, a next feature is chosen by a sequential online feature selection that learns which features are most informative at each time step. Experiments on toy datasets and a handwritten digits classification task show significant reduction in required data for correct classification, while a medical diabetes prediction task illustrates variable feature cost minimization as a further property of our algorithm
elib-URL des Eintrags: | https://elib.dlr.de/81300/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Minimizing Data Consumption with Sequential Online Feature Selection | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2012 | ||||||||||||||||
Erschienen in: | International Journal of Machine Learning and Cybernetics | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | April 2012 | ||||||||||||||||
DOI: | 10.1007/s13042-012-0092-x | ||||||||||||||||
Verlag: | Springer | ||||||||||||||||
ISSN: | 1868-8071 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Reinforcement learning, Feature selection, Classification | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (bis 2012) | ||||||||||||||||
Hinterlegt von: | Grebenstein, Dr. sc. Markus | ||||||||||||||||
Hinterlegt am: | 21 Feb 2013 13:37 | ||||||||||||||||
Letzte Änderung: | 06 Sep 2019 15:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags