elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Stiffness Optimization of Composite Wings with Aeroelastic Contraints

Dillinger, Johannes und Abdalla, M.M. und Klimmek, Thomas und Gürdal, Z. (2012) Stiffness Optimization of Composite Wings with Aeroelastic Contraints. In: 2012 AIAA Conference Proceedings. 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2012-09-17 - 2012-09-19, Indianapolis/Indiana, USA.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The drive for ever more efficient aircraft structures stimulates the research to use the full potential of anisotropy of composite materials. The stiffness optimization of the upper and lower skins of a composite wing is demonstrated in this paper. The wing was optimized taking into consideration mass, strength, buckling, aerodynamic twist and aileron effectiveness. The elements of the inplane and bending stiffness matrices and laminate thicknesses were used as design variables. Static aeroelastic analysis was performed using Nastran to find the responses of the structure and their sensitivities to the design variables. The results of aeroelastic finite element analysis were processed to create efficient structural approximations of the responses. The approximations were used by a gradient based optimizer to update the design variables. The separable and continuous approximations in terms of the design variables allowed for the use of efficient parallel computing strategies, where single or multi-modal objective functions were minimized. The first numerical results for a generic wing confirmed a functional setup for multi load case stiffness optimizations with aeroelastic design responses. Stiffness optimized unbalanced laminates demonstrated a clear advantage over balanced laminates for mass or aileron effectiveness optimization, with constraints on strength and buckling.

elib-URL des Eintrags:https://elib.dlr.de/79181/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:Stiffness Optimization of Composite Wings with Aeroelastic Contraints
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dillinger, Johannesjohannes.dillinger (at) dlr.dehttps://orcid.org/0000-0002-7522-7555NICHT SPEZIFIZIERT
Abdalla, M.M.Aerospace Structures, Delft University of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klimmek, Thomasthomas.klimmek (at) dlr.dehttps://orcid.org/0000-0002-5573-7355NICHT SPEZIFIZIERT
Gürdal, Z.Aerospace Structures, Delft University of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2012
Erschienen in:2012 AIAA Conference Proceedings
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:aeroelasticity, composite optimization, lamination parameter, aeroelastic tailoring
Veranstaltungstitel:12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
Veranstaltungsort:Indianapolis/Indiana, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 September 2012
Veranstaltungsende:19 September 2012
Veranstalter :The American Institute of Aeronautics and Astronautics (AIAA)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation & Validierung (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik
Hinterlegt von: Erdmann, Daniela
Hinterlegt am:19 Dez 2012 17:03
Letzte Änderung:24 Apr 2024 19:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.