Kersten, Jens (2014) Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems. Pattern Recognition, 47 (8), pp. 2582-2595. Elsevier. doi: 10.1016/j.patcog.2014.02.015. ISSN 0031-3203.
PDF
- Only accessible within DLR
- Published version
2MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0031320314000673
Abstract
Abstract: Using mixture models to represent univariate and multivariate data has shown to be a very flexible and powerful tool in several areas, for example computer vision, machine learning, pattern recognition and remote sensing. The expectation maximization (EM) algorithm is a widely acknowledged statistical approach in generative model estimation. In this article, a new EM-algorithm for time-critical supervised classification of aerial imagery is proposed. Compared to standard EM and other approaches, the proposed method has the following advantages: 1) No knowledge about the distribution of each thematical class is needed. 2) The number of components for each class is estimated. 3) The algorithm does not require careful initialization. 4) Singular estimates are avoided due to the ability of pruning components. 5) The features that best discriminate between the classes are identified simultaneously. 6) The relevant features are identified by incorporating the separability of the classes in the feature space domain via Mahalanobis distances. Three experiments using artificial and real datasets are carried out in order to demonstrate the relevance and quality of the results obtained by the proposed method. The main findings are: 1) Feature selection is a very important task in terms of prediction quality of models. 2) In the examined experiments the proposed method estimates better models, in terms of classification results and further measurements, than other state-of-the-art methods, e.g. Random swap EM. 3) The Incorporation of Mahalanobis distances is very valuable for the identification of relevant features. 4) The proposed method is more robust than the compared methods. 5) In case of complex data distibutions, the new approach is able to provide better results than the compared methods.
Item URL in elib: | https://elib.dlr.de/78952/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2014 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Pattern Recognition | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 47 | ||||||||||||||||||||||||||||
DOI: | 10.1016/j.patcog.2014.02.015 | ||||||||||||||||||||||||||||
Page Range: | pp. 2582-2595 | ||||||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||
ISSN: | 0031-3203 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Gaussian mixture models, clustering, feature selection, feature saliency, expectation maximization, supervised learning, remote sensing | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||||||
HGF - Program Themes: | Traffic Management (old) | ||||||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||||||
DLR - Program: | V VM - Verkehrsmanagement | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | V - Projekt VABENE (old) | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||
Deposited By: | Kersten, Dr.-Ing. Jens | ||||||||||||||||||||||||||||
Deposited On: | 09 Nov 2020 15:36 | ||||||||||||||||||||||||||||
Last Modified: | 20 Nov 2023 15:01 |
Repository Staff Only: item control page