Cerra, Daniele und Müller, Rupert und Reinartz, Peter (2013) A Classification Algorithm for Hyperspectral Images based on Synergetics Theory. IEEE Transactions on Geoscience and Remote Sensing, 51 (5), Seiten 2887-2898. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2012.2219059. ISSN 0196-2892.
PDF (Preprint)
1MB | ||
|
PDF
2MB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6352889
Kurzfassung
This paper presents a classification methodology for hyperspectral data based on synergetics theory. Pattern recognition algorithms based on synergetics have been applied to images in the spatial domain with limited success in the past, given their dependence on the rotation, shifting and scaling of the images. These drawbacks can be discarded if such methods are applied to data acquired by a hyperspectral sensor in the spectral domain, as each single spectrum, related to an image element in the hyperspectral scene, can be analyzed independently. The spectrum is first projected in a space spanned by a set of user-defined prototype vectors, which belong to some classes of interest, and then attracted by a final state associated to a prototype. The spectrum can thus be classified, establishing a first attempt at performing a pixelwise image classification using notions derived from synergetics. As typical synergetics-based systems have the drawback of a rigid training step, we introduce a new procedure which allows the selection of a training area for each class of interest, used to weight the prototype vectors through attention parameters and to produce a more accurate classification map through plurality vote of independent classifications. As each classification is in principle obtained on the basis of a single training sample per class, the proposed technique could be particularly effective in tasks where only a small training dataset is available. The results presented are promising and often outperform state of the art classification methodologies, both general and specific to hyperspectral data.
elib-URL des Eintrags: | https://elib.dlr.de/78367/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | Paper accepted in its final form on the 30th of August 2012. | ||||||||||||||||
Titel: | A Classification Algorithm for Hyperspectral Images based on Synergetics Theory | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Mai 2013 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 51 | ||||||||||||||||
DOI: | 10.1109/TGRS.2012.2219059 | ||||||||||||||||
Seitenbereich: | Seiten 2887-2898 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
Name der Reihe: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Hyperspectral image analysis, image classification, least squares approximation (LS), synergetics theory. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Cerra, Daniele | ||||||||||||||||
Hinterlegt am: | 13 Nov 2012 12:47 | ||||||||||||||||
Letzte Änderung: | 29 Nov 2023 12:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags