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Abstract

This paper presents a classification methodology for hyperspectral data based on synergetics theory.

Pattern recognition algorithms based on synergetics have been applied to images in the spatial domain

with limited success in the past, given their dependence on the rotation, shifting and scaling of the images.

These drawbacks can be discarded if such methods are applied to data acquired by a hyperspectral sensor

in the spectral domain, as each single spectrum, related to an image element in the hyperspectral scene,

can be analyzed independently. The spectrum is first projected in a space spanned by a set of user-defined

prototype vectors, which belong to some classes of interest, and then attracted by a final state associated

to a prototype. The spectrum can thus be classified, establishing a first attempt at performing a pixel-

wise image classification using notions derived from synergetics. As typical synergetics-based systems

have the drawback of a rigid training step, we introduce a new procedure which allows the selection

of a training area for each class of interest, used to weight the prototype vectors through attention

parameters and to produce a more accurate classification map through plurality vote of independent

classifications. As each classification is in principle obtained on the basis of a single training sample

per class, the proposed technique could be particularly effective in tasks where only a small training

dataset is available. The results presented are promising and often outperform state of the art classification

methodologies, both general and specific to hyperspectral data.

Index Terms

Hyperspectral image analysis, image classification, least squares approximation (LS), synergetics

theory.

I. INTRODUCTION

Hyperspectral data are characterized by very rich spectral information, and as a consequence

have strong discrimination power in detecting targets of interest. On the other hand, the very high
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dimensionality of these data introduces several problems, summarized by the principle known

as curse of dimensionality [1]. Very often, not all the bands are useful for a given application.

As a consequence, band selection can be performed. Alternatively, the data can be projected on

a lower-dimensionality space to aid data exploration or improve computation performances [2].

This is usually a preprocessing step aiding other operations such as classification, which is a

task often constituting both the final objective and validation step of dimensionality reduction

methodologies [3]. One of the most widely used among such techniques in remote sensing is

the principal component analysis (PCA). PCA computes orthogonal projections that maximize

the amount of data variance, and yields a dataset in a new uncorrelated coordinate system [4]. If

the user desires to differentiate different classes of interest, however, such approach may not be

optimal, as in general the dimensions in the subspace do not convey any semantics. Therefore,

these may not match the user’s needs, as information regarded as important for a given application

may be considered secondary by the system, and thus discarded in the process.

This paper introduces a classification methodology for hyperspectral data based on synergetics

theory, in which the subspace on which the data are projected is defined by the user. Synergetics

is a four decade old theory describing the spontaneous formation of patterns and structures in a

system through self-organization. Algorithms based on synergetics have been applied to pattern

recognition in images, but they have often been limited by their dependency on scaling, rotation

and shifting of the images [5]. These drawbacks would not affect applications to hyperspectral

data performed in the spectral domain, as each image element, representing a spectrum, can

be analyzed independently. Each spectrum is projected in a subspace composed by a set of

user-defined prototype vectors, belonging to some classes of interest: this can be regarded as a

semantic space, as the value of the test vector in each dimension quantifies the similarity to a

given class of interest. The spectrum may then be represented as a particle on a potential surface,

built as a manifold in this subspace, and attracted by one of several possible final states, with

each one being associated to a user-defined class, and hence classified. The proposed approach

can only be applied to overdetermined systems, i.e. it requires the data dimensionality to be

much higher than the number of classes of interest, therefore hyperspectral data enable for the

first time a pixel-wise classification methodology derived from these notions.

As typical synergetics-based systems have the drawback of a rigid training step, we modify

it to allow the selection of user-defined training areas. In a first step, several independent
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classifications are carried out on the basis of a single training sample per class, while the other

samples belonging to the training set are used to weight the prototype vectors through attention

parameters. Results are further improved by manipulating the data directly in the space spanned

by the user-defined prototypes, where each image element is displaced towards the pixels which

are its neighbours both in the image space and in the prototype vectors space. This increases

the probability of a pixel to be attracted by the stable state related to the class to which the

majority of its adjacent pixels belongs, leading to a more homogeneous data representation,

and follows recent years’ trend of exploiting contextual information to improve the results of

pixel-wise classification in hypespectral data [3]. A final classification map is produced through

majority vote of the independent classifications. The operations carried out in the prototype

vectors space implicitly take into account the intraclass dependencies and similarities, and the

results obtained are comparable to state of the art classification methodologies, both general and

specific to hyperspectral data. The proposed technique is, for a given application, well capable

of handling high-dimensional data, as the synergetics principle drastically reduces the degree of

freedoms in a system. This step is represented by the transformation of a dataset from N to M

dimensions, with M << N , where N is the original number of spectral bands in the image,

and M is the number of classes of interest as selected by the user.

The proposed technique is able to exploit the same set of training samples twice: not only

for the classification step, but also to iteratively improve the independent classifications’ results.

Therefore, it is able to produce satisfactory results even if a limited number of training samples is

available, which is a desired property in recent hyperspectral analysis methods [6]. Furthermore,

experiments suggest that this leads to a better discrimination between classes exhibiting similar

spectral features with respect to traditional classification techniques.

The paper is structured as follows. Section II introduces the main ideas to the base of the

synergetics theory, and illustrates how a pattern-recognition system can be defined according

to this theory, highlighting its similarities and correspondences with the Least Squares (LS)

approach for the approximate solution of overdetermined systems. Section III illustrates how

the synergetics principles can be applied to hyperspectral data, to reduce dimensionality and

perform pixel-wise classification, and analyzes the relation between synergetics and established

concepts in estimation theory and data processing. Subsequently, different operations are carried

out directly in a user-defined prototype vectors space to improve the initial results, and a final



IEEE TRANSACTIONS GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, XXXX 2012 4

classification is derived by plurality vote. Section IV reports experiments on the Airborne Visible

Infrared Imaging Spectrometer (AVIRIS) Salinas dataset and comparisons to state-of-the-art

methods. We conclude in Section V with some final considerations and an outlook on future

work.

II. SYNERGETICS THEORY

Synergetics is an interdisciplinary science originally founded by Hermann Haken in 1969 [7].

The synergetics theory tries to find general rules for the formation of patterns through self-

organization, as new structures or processes spontaneously arise in macroscopic systems. Such

rules should be valid for large classes of systems, being these composed of atoms, molecules,

neurons, individuals, or image elements. The term synergetics derives from the Greek ”working

together”, indicating the cooperation of different parts in a system or different systems. The

fields of applications of synergetics range from biology to ecology, chemistry, cosmology, ther-

modynamics and up to sociology: countless self-organization phenomena have been explained

through synergetics, including the formation of laser light and the origin of galaxies structures

[8].

Although this theory originates from pattern formation, Haken links it to pattern recognition,

by regarding the latter as ”a sequence of symmetry-breaking events, where at each branching

point new information is needed to break the symmetry, i.e., to make a unique decision possible”

[9]. Such branching points are related to the reduced degrees of freedoms in a pattern formation

process based on synergetics, as these obey to an enslaving principle related to some order

parameter, which drastically reduces the degrees of freedom in the system. Henceforth we will

restrict our analysis to pattern recognition and image analysis methods based on this theory, of

which the first example is described in [5].

From here onwards, matrices are represented as bold upper case (A), column vectors as bold

lower case (a), while all other quantities are scalar (a).

In the first step of a typical synergetics-based pattern recognition system the user selects

some prototype patterns, each of which corresponds to a class of interest [5]. Let v′k ∈ RN , k =

1, ...,M be such prototype vectors (or classes) formed by N -dimensional real valued components,

normalized by:
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vk =
v′k
|v′k|

(1)

so that |vk| = 1. This set of prototypes spans the subspace Ωc ⊂ RN with M < N . As

the prototype vectors do not build in general an orthogonal set of basis vectors for Ωc, a dual

space having the same dimensionality M is constructed using the contravariant (or adjoint) basis

vectors vj ∈ RN ,j = 1, ...,M using the relation

vj =
M∑
k=1

gjk · vk (2)

A unique set of contravariant prototype vectors can be derived employing the orthonormality

relation < vj,vk >= δik with < ., . > being the scalar product and δjk the Kronecker delta.

This leads to the metric tensor G ≡ (gjk) = V−1 with V = (< vj,vk >) the matrix of the

scalar products of the prototype vectors. If an arbitrary feature vector v ∈ RN belonging to an

unknown class is then presented to the system, it can be expressed by

v =
M∑
k=1

qkvk + r, (3)

where the sum consists of the linear combination of the prototype patterns, and the remaining

residual vector r. The coefficients qk =< vk,v > are the projection of the vector v onto the

contravariant basis vectors vk and are also called order parameters in the parlance of synergetics.

In synergetics theory an energy function is established with local energy minima for each

of the prototype vectors. A prototype generates two symmetric minima but we consider here

only the positive values. In order to establish a dynamic system the following energy function

is defined:

E(q1, ..., qM) = −1

2

M∑
k=1

λk · (qk)2 +
1

4

M∑
k=1k 6=j

M∑
j=1

Bkj(q
k)2 · (qj)2 +

1

4
C

(
M∑
k=1

(qk)2 + |r|2
)2

, (4)

Where Bkj and C are positive constants (e.g. Bkj = 1,∀k, j = 1, ...,M), and C = 1), and

{λ1, ...λM} are positive values, also called attention parameters. Thus, local energy minima for

each of the prototypes are formed (see figure 1). The first term generates minima along the

prototype vectors, while the second term discriminates the prototypes in the landscape of the

energy function, and the third is the saturation term, enveloping the energy system.
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Fig. 1. Energy function E(q1, q2), for two prototypes v1, v2 in the order parameter domain and behaviour of a test vector v

projected on the plane in the parameter domain. The vector v = q1v1 + q2v2 is attracted towards a stable focus, corresponding

to a final state for the vectors v1 or v2 (circled in the figure). The final state in the two images differs as the attention parameters

are changed. In the second image the parameter λq1 , associated to the vector v1, has been drastically decreased, and the test

vector is then attracted by the final state associated to the vector v2.

The basic equation of synergetics for pattern recognition as formulated in eq. (4) describes

the time evolution of the feature vector v(t). A coupled differential equation defines a dynamic

system by describing the time evolution of the order parameters in the adjoint space built from

M prototype vectors. Loosely speaking, the feature vector v(t) is moving in the landscape of

energy towards a unique final state for v(t→∞):

d

dt


q1

...

qn

 = −5qj ·E(q1 . . . qn). (5)

Therefore, a pattern-formation process takes place as the initial pattern is pulled into one of

the possible final states, each of which is linked to a prototype vector. The input is then assigned

to the class of interest represented by the chosen prototype.

To better understand the evolution of a test vector in the parameter space and its relation with

the final states associated to each prototype vector, consider the example in Fig. 1. The surface

is a 3D-representation of the energy function E(q1, q2), related to two prototypes v1 and v2 in

the order parameter domain. An unknown test vector, expressed as a linear combination of the

prototype vectors, is represented by a point projected on the potential surface in the parameter

domain. The test vector is attracted towards a stable focus, corresponding to a final state for the

vectors v1 or v2. If the attention parameters λq1 and λq2 are modified, the final state attracting
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the test vector may differ: in the left image the attention parameters are set to λq1 = λq2 = 1.0

and the test vector is attracted to the final state v1, while in the image to the right λq1 is set to

0.5 while λq2 remains unchanged, and the test vector is attracted by the stable focus related to

v2.

Haken himself applied his synergetics-based pattern recognition algorithm to image labeling,

in the specific to face recognition and sketch categorization. He proposes to form the prototype

vectors space with n user-selected gray-scale images of size X × Y , which are converted to

1-dimensional vectors of size X × Y in a first step. Afterwards, a pattern-formation process

takes place, in which an unknown image is presented to the system, and classified as it is pulled

in the final state related to the most similar prototype. As each dimension of the prototype and

test vectors is linked to the gray value of a single pixel, such system only works if the patterns

have the same size, orientation and location in the test and retrieved images. To overcome this

problem, the authors propose a similar algorithm based on Fourier analysis, making the patterns

independent from rotation and shifting to some degree, but with limited success [5]. After the

first one, numerous pattern recognition algorithms based on synergetics have been described.

Applications on image classification have been proposed, among others, in [10], [11], [12], [13],

and [14]. In [15] the authors perform 3D reconstruction of buildings. In the remote sensing

field, an effort has been done to classify Synthetic Aperture Radar (SAR) image tiles and binary

images derived from SAR scenes in [16]. Such notions have been popular especially in the 90’s,

with following years witnessing an interest decrease, probably due to the rigid training step and

the great dependance on scale, rotation and shift typical of such methods.

A. Synergetics Theory and Least Squares

We will now show that the order parameters are closely related to the Least Squares (LS)

approach for the approximate solution of overdetermined systems. Let A = (v1, ...,vM) be

the matrix composed by the column vectors of the prototypes and p̂OP = (q1, ..., qM)T = (<

v1,v >, ..., < vM ,v >)T be the vector of the order parameters. Using the definition of the

matrix V = AT ·A and equation (2) for the row vectors vj the following equation holds:

p̂OP = G ·AT · v = (AT ·A)−1 ·AT · v. (6)
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Fig. 2. Prototype vectors as normalized spectra collected from a HyMap scene (water, grass, and railroad), plus reconstruction

of a test vector (roof) as a linear combination of the prototype vectors.

The order parameters are therefore the least squares solution for pOP of the linear equation

v = A · pOP + r by minimizing the residuals rT · r → min (note: the hat of p̂OP denotes the

best solution in the sense of least squares). Equation (3) can be now rewritten as:

v = A · p̂OP + r = v̂ + r, (7)

where v̂ ∈ Ωc is the orthogonal projection of the feature vector v onto the subspace spanned

by the prototype vectors and is given by the v̂ = P · v with the symmetric and idempotent

projection operator P = A(ATA)−1AT . The vector r = (I − P) · v, with I representing the

unit matrix, denotes the residual vector which is orthogonal to the subspace Ωc. It has to be

remarked that each Hilbert space can be uniquely decomposed by orthogonal sub-spaces. To the

best of our knowledge, it is the first time that such correspondence between LS and synergetics

theory are made explicit.

III. CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON SYNERGETICS THEORY

For hyperspectral data the synergetics approach combines several characteristics typical of

different well-known methods such as Spectral Angle Mapper (SAM) [17], Orthogonal Subspace
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Fig. 3. Simulation of the synergetics process for the test vector in Fig. 2. At t = 0 the test vector is projected into the space

spanned by the three prototype vectors, and can be reconstructed as in Fig. 2. The test vector is then attracted by one stable

final state, corresponding to one of the basis vectors, which is selected as the winner.

Projection (OSP) [18], and spectral unmixing techiques [19], and can be derived from the

description in Section II as follows.

Firstly, a set of N -dimensional real valued components derived from M spectral signatures

is chosen to build an adjoint space vk, k = 1, ...,M , as in eq. (2). The normalization of the

spectra suppresses illumination influences, as only the direction of the prototypes in the feature

space is used, resembling in this a desirable property typical of the SAM method. A spectrum s

belonging to an unknown class is then chosen as a test vector v in eq. (3), and represented as a

linear combination of the prototype patterns. This resembles OSP which, based on the criteria of

least squares minimization (see also Section II-A), finds an optimal representation of the feature

vectors in terms of their projections onto the subspace of prototype vectors, by minimizing the

length of the residual vector r. In a similar way to spectral unmixing techniques, the projected

vector s is expanded in the subspace of the adjoint prototypes vk. Its representation is given in

terms of the order parameters qk, which are abundance values related to the composition of s in

terms of the prototype vectors.

Finally, the evolution in time of s is tracked, as the test spectrum is pulled towards one of



IEEE TRANSACTIONS GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, XXXX 2012 10

the M possible final states, in a similar way to the example sketched in Fig. 1. The synergetics

principle [5] ensures that every prototype has an associated final state, and that no final states

exist other than the ones associated to each vector in the adjoint vector space. The potential

of the test vector at time t = 0 is equal to the projection of the test vector on each prototype

vector, i.e. to the coefficient of each prototype vector resulting in the linear combination yielding

a reconstruction of the kind sketched in Fig. 2. At time t =∞ the test vector becomes a scaled

version of the winning prototype.

We illustrate this procedure through an example. We start by selecting three 128-dimensional

spectra selected from a airborne scene acquired by the HyMap sensor (HyVista Corporation)

over Munich, Germany. The spectra v1, v2, and v3 are related to areas on ground containing

water, grass, and railroad respectively. They have been chosen in order to be as pure as possible,

and span an area on ground of approximately 4m X 4m. An additional spectrum related to a

roof is then chosen as test vector s. We greatly reduce the dimension of the system by building

an n-dimensional space which uses as basis the projections on the adjoint prototypes vi, with

i ∈ 1, 2, 3. The potential function will be modeled as a hyperplane in 4 dimensions, with the

fourth dimension being the value of the potential in the 3d space. We can then represent the

test vector as a linear combination of the prototype adjoint vectors: s = q1v1 + q2v2 + q3v3 + r,

with r the residual vector (Fig. 2). Afterwards, the coefficients of the linear combination are

used to resolve the energy function in eq. (4), with the parameters λk = B = C = 1. We can

observe in Fig. 3 the evolution of the potential function and of the retrieved prototype pattern,

corresponding to the class ”railroad”. The final state for the test vector employed coincides with

our expectations, as human-made objects spectra are often more similar to each other, rather than

to natural objects: we expect then the class ”railroad” to prevail over the ”water” and ”grass”

classes. This example can easily be extended to the classification of a hyperspectral image, by

building once a prototype vectors space as described above, and subsequently labeling each

image element with one of the classes of interest, after resolving equation (5).

Typical algorithms based on synergetics theory for pattern matching, as in the example above,

need to solve differential equations to estimate the dynamics of the test vector after being

projected in the prototype vectors space. This makes difficult to apply such methods in real

applications. Haken shows in [5] that the order parameter with the highest value at time t = 0

is related to the prototype that will be chosen by the system as winning final state, while all
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others will eventually decay and assume a value of 0, if the attention parameters remain stable

under certain limits. Based on these observations, many systems based on synergetics theory use

approximations to avoid computing the differential equation (3), usually by selecting the largest

initial order parameter [20], [14], [21], [22], [11], [13].

From here on we approximate then the synergetics equation (4) by its first term, which

generates minima along the prototype vectors, only considered at time t = 0. It has to be

remarked that the non-linear terms in the full potential equation (4) should be investigated in the

future, along with a way of selecting the best values for the parameters B and C in the equation.

The first non-linear term weighted by B represents the interactions between the chosen prototype

vectors, while the second weighted by C is a general saturation component quantifying how fast

does the projected test vector move in the prototype space. Therefore, the higher abundance

value defines the classification result, and a class Ck is chosen among M possible classes for a

test vector v with associated order parameters qk, if

k = argmax
k
qk. (8)

The workflow detailed in the next paragraphs is summarized by the sketch in Fig.4.

A. Enabling the selection of a training area

For a pattern recognition system such as the one described in [5], the training step is quite

problematic. As each training sample becomes a dimension in the adjoint vectors space, a

classification in such space is strongly dependent on the selection of the base vectors, and

such systems do not allow selecting different training samples for the same class. A spectrum

averaged over a small, homogeneous area can reduce this dependance to some degree, but does

not take into account intra-class variations. We could instead assign several samples to the same

class of interest, but this would result in an over-determined adjoint vector space derived from a

set of basis vectors with strong similarities between them. Such vectors form an ill-conditioned

matrix, which is necessary to invert in eq. (2). This would introduce non-negligible numerical

errors.

To cope with this problem we propose a classification procedure for an image H as follows.

In the first step, for each class Ci ∈ H , with i ∈ 1...M , n samples are selected. Then, n
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Fig. 4. Classification procedure. After the selection of N training samples per class as prototypes, N prototype spaces are

created. The image is projected on each of such spaces, and each projection is independently classified after a step of spatial

regularization. Each classification is then improved through an automatic tuning of the attention parameters related to the classes

of interest. The final classification is derived by plurality vote.

classifications are performed, in each of which a different training sample for each class is

selected. Afterwards, each pixel p(x, y) ∈ H at coordinates (x, y) is assigned to a given class

according to a plurality vote, which selects class Ck if:

k = argmaxj

n∑
i=1

D(i, j), (9)

where D(i, j) ∈ 0, 1, with D(i, j) = 1 if the classification i chooses Cj as the class to which

p belongs, and 0 otherwise [23]. Ties are resolved by choosing k as the first number in standard

enumeration. Such simple majority vote criterion is effective if the accuracy of each classifier

is above 50%, as the Condorcet’s jury theorem ensures that in this case the accuracy of the

ensemble is monotonically increasing and approaches 100% for n→∞ [24].
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Fig. 5. Sample band from Salinas dataset (left), and available ground truth (right).

B. Adaptive spatial regularization

A classification based on synergetics as described so far is solely based on the data spectral

information, as the analysis is carried out in the spectral domain spanned by the user-defined

prototype vectors. Therefore, the information conveyed by the spatial interactions of the pixels in

a scene are discarded, limiting the effectiveness of the method. In recent years, many pixel-wise

hyperspectral classification algorithms have been defined which integrate spatial information in

the analysis, often through the use of morphological operators [25] [6] [26].

The synergetics-based method presented in this work allows looking at the embedding of

spatial information under a different point of view. An interesting way to carry out such step

would be by manipulating the data directly in the prototype vectors space. Each test vector should

be displaced towards its neighbours projected in the same vectorial space spanned by the user-
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1. Given a square window w of side ws, a distance measure d, a pixel p(x, y)

at coordinates x and y belonging to an image of size m× n, & a threshold t:

2. if (ws/2 < x < (m+ 1− ws/2) and ws/2 < y < (n+ 1− ws/2)) begin:

3. For i = 0 . . . ws do

4. For j = 0 . . . ws do

5. if (d(p(x− [ws
2

] + i, y − [ws
2

] + j), p(x, y)) ≤ t)

w(i, j) = 1

6. else w(i, j) = 0

7. w = w

total (where w=1)

8. Return w

Fig. 6. Pseudocode to compute a convolution window w for the adaptive spatial filtering of a pixel p.

defined prototype vectors, but only if their spectral decompositions in terms of prototype vectors

are similar. This would increase the probability of a pixel to be attracted by the stable state related

to the class to which the majority of its adjacent pixels belong, leading to a more homogeneous

classification. After the representation of the data in the parameter space, we employ then an

adaptive low-pass filter, achieved through convolution in the prototype domain with a square

window of size ws, where ws is an odd number, built as described by the pseudo-code in fig. 6,

with the distance d representing Euclidean distance.

This introduces two additional parameters in the computation (the window size ws and the

threshold t), but improves results considerably and smooths intraclass variations while keeping

edges information at the same time. Furthermore, the original spectral information is well

preserved, as the value of each pixel is taken into account. This is an improvement over

morphological operators, which alter in a more severe way the informational content of the

data by replacing the value of a pixel with some value from its neighbourhood.
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C. Attention parameters tuning

Up to this point the weighting for the prototype vectors, represented by the λ parameters,

has not been taken into account. Therefore, for a prototype space composed by M classes of

interest, λi = 1,∀i ∈ 1 . . .M in eq. (4).

In [12] the authors propose a weighting of the attention parameters through an explicit

parameter learning phase, by choosing a decision boundary in the order parameter space. Such

boundary divides the dataset into the classes of interest, and on its basis the attention parameters

are derived. This approach finds an optimal parameters weighting, but has two major drawbacks.

Firstly, it assumes that the data projected in the order parameter space falls along a smooth curve,

i.e. that it is possible to perfectly separate the classes of interest by tuning the λ parameters,

which is in general not the case. Furthermore, all the test set has to be used as training, since the

algorithm requires to know a priori which objects are close to the decision boundary and how

they are projected in the prototype vectors space. An award-penalty learning mechanism has been

proposed in [20] to improve classification results based on synergetics theory. In this work, the

attention parameters for a given class are iteratively increased or decreased by a small fraction

δ, in presence of false negatives and false positives in the classification results, respectively. The

system stops when an user-selected accuracy threshold is met. As this methodology uses the full

test dataset as training, it is not feasible for real applications.

We propose an improvement over the methodology proposed in [20] for adjusting the attention

parameters λ in the synergetics equation. Instead of using the complete data set as training, we

select an additional training area Ti for each class Ci, and employ it to tune the overall λ values.

The attention parameters are updated as follows. Let FN(i), FP (i), and TN(i) be the false

negatives, the false positives, and the total number of pixels in Ti. If, for a given class Ci, we

have FN(i) > FP (i), it means we must increase λi, as the class Ci is not correctly detected,

and also is not dominant over the other classes. This means that in the order parameter space

the final state(s) associated to Ci do not attract spectra belonging to other classes: therefore, if

we increase the attention parameter λi, we expect the decrease of FN(i) to be greater than the

increase of FP (i). So in this case we perform the following adjustment:

λi = λi

(
1 + α

FN(i)

TN(i)

)
(10)
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On the other hand, if FP (i) > FN(i), than the class is an absorbing class, i.e. the predominant

effect is the attraction into the final state related to Ci of objects belonging to other classes. But

if the difference is small also the absorption effect is small, and it turns into confusion between

classes instead. Therefore:

λi = λi

(
1− βFP (i)− FN(i)

TN(i)

)
(11)

Here α and β are two regularization constants, representing how much the λ parameters are

modified, with β slightly higher than α, in order to balance the changes in the λ value. In the

experiments contained in this section the values α = 0.1 and β = 0.15 have been chosen. These

parameters could be chosen to be smaller, but would need more iterations to converge to their final

value. Such solution brings the process closer to the requirements of a real application, where

often the user selects a restricted training area to perform the analysis. It has to be remarked

that our approximation to the most similar base vector vt=0 as chosen at t = 0 may now lead

to misclassifications, since if the attention parameters are changed the winning prototype can be

different from vt=0. According to [13], for the case of a two dimensional prototype space, no

attention parameter should be set to more than twice the value of the other to ensure that a test

vector is attracted by the final state corresponding to the prototype vector of highest potential at

t = 0.

The need of an additional training area Ti can be eliminated if Ti is composed for each

classification by the training samples which do not take part in the formation of the prototype

vectors space. It will be clear from the results achieved that such solution gives by far the best

compromise between classification quality and size of the training area needed by the algorithm,

at the cost of a negligible computational overhead.

D. Required computational resources

The computational complexity of the algorithm is driven by the projection of the image

elements onto the adjoint vector space and by the spatial regularization step. A rough estimate

of the computational resources needed by each step of the procedure is reported in Table I. The

first step taken to produce the final classification map is the creation of the adjoint vector space,

which requires a number of operations proportional to N × C3 × B, where N is the number
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TABLE I

ROUGH ESTIMATE OF OPERATIONS REQUIRED FOR EACH STEP OF THE CLASSIFICATION PROCEDURE (REFER TO SECTION I

FOR A DESCRIPTION OF EACH ENTITY).

Step Required Operations

Adjoint vectors space N × C3 ×B

Data projection N × C × P ×B

Spatial regularization P ×W 2 × C2 ×N

Attention parameters tuning N × C × L

Final classification P ×N × C

of training samples per class, C the number of classes, and B the number of bands in the

hyperspectral image; this step is dominated by the N matrix inversions required. The projection

step requires N × C × P × B operations, where P is the total number of pixels in the image.

The spatial regularization step comprises P ×W 2 × C2 × N operations, with W the size of

the square analyzing window employed, and the term C2 deriving from the computation of the

euclidean distances in the parameters space. The attention parameters tuning is less expensive,

having a complexity proportional to N ×C ×L, with L being the number of iterations. Finally,

the majority vote of independent classifications needs operations proportional to P ×N×C. The

total complexity of the algorithm is then proportional to Ktot → (N × C)((C2 × B) + P (B +

W 2 × C + 1) + L). In a realistic scenario O(N) ≈ O(C) ≈ O(L) ≈ O(W 2) = O(A), and we

can rewrite Ktot → A2((A2 × B) + P (B + A2 + 1) + A) ≈ A2P × (A2 + B), considering that

B << P .

To give an idea, the experiments reported in next section had typical values (as described in

this section) of: P ≈ 25.000, B ≈ 200, C = 15, N = 20, W = 5, and L = 15. The running time

to produce a classification map with these settings on a machine with a double 2 GHz processor

and 2GB of RAM, with a non-optimized code written in IDL, was less than 5 minutes.

IV. RESULTS

A. Salinas AVIRIS dataset

We analyze a hyperspectral scene acquired by the Airborne VisibleInfrared Imaging Spec-

trometer (AVIRIS) sensor of the Jet Propulsion Laboratory acquired over the Salinas Valley in
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California, USA. The full scene has a size of 512 × 217 samples with 192 spectral bands in

the range 0.4 to 2.5 µm, after removing water absorption bands and noisy bands according to

[26]. The sensor has a spectral resolution of 10 nm and a spatial resolution of 3.7 m. The data

are at-sensor radiance measurements and include vegetables, bare soils and vineyard fields. A

sample band of the scene and the available ground truth are shown in Fig. 5.

The test dataset has been analyzed with the described methodology, summarized by Fig. 4.

Twenty samples per class have been chosen (see Fig. 7(a)) and the same number of independent

classifications have been carried out, with the final result derived from a majority voting as

explained in the previous section. Figure 7(b) presents an RGB combination for the first three

Principal Components extracted from the scene: as the class corn is composed by two different

homogeneous areas (”corn” and ”senesced weeds” - see the different values for the pixels in the

upper and lower part of the class in the image), two different classes have been considered and

then merged in an unique class, as a post-processing step common to each of the carried out

classification procedures. Therefore, 40 samples have been employed for this class. It can also

be noticed that some classes look difficult to separate (e.g. Broccoli1 and Broccoli2, or Grapes

and Vineyard untrained).

Results of the independent classifications have been improved by an additional step of attention

parameters tuning, carried out with three different settings, all of them for 16 iterations. In the

first setting, with a similar approach to the one contained in [20], we used the full ground truth

as a reference, and used it to tune the parameters as described in the above section. As this

approach is not realistic in practical applications, where the classes of the test set are usually

unknown, in a second setting we selected a separate training set, consisting of 100 samples per

class. Finally, in the third setting we selected no additional training area, but used for every

classification one sample per class to build the prototype vector space and the other 19 to tune

the lambda parameters. This introduces a negligible computational overhead, as the λ parameters

tuning is achieved in linear time for one iteration.

Fig. 8 shows the classification results for the overall scene. Fig.8(a) presents the results for a

classification carried out on the basis of a single training sample per class, with confusion and

salt and pepper noise being evident in many classes. Results improve considerably in Fig.8(b),

after a plurality vote of 20 independent classifications. The improvement in overall accuracy

achieved through majority vote agrees with the expected one of around 15% for a comparable



IEEE TRANSACTIONS GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. X, XXXX 2012 19

number of independent classifications and accuracy of a single classifier [23]. Salt and pepper

noise in the classification is removed in Fig.8(c) after a preliminary step of adaptive spatial

filtering, as detailed in Section III-B. Results benefit further from an automatic tuning of the

attention parameters, with this improvement being more obvious when the full ground truth is

taken as a reference (Fig.8(d) and 8(e)). Even though misclassifications are present, it has to be

remarked that the confusion is almost exclusively limited to classes belonging to a same super-

class. Therefore, we have confusion between vineyards and grapes, different fallow or broccoli

fields, and lettuces of different age. The improvements obtained through the automatic tuning of

the attention parameters for the case of the full ground truth adopted are reported in Fig. 9. As

the algorithm tries to find the best parameters for all classes, the classes of interest containing

a large number of pixels are not given priority, and may be penalized yielding a worse overall

accuracy. On the other hand, the plot of the values for the average accuracy exhibits an increase

up to an horizontal asymptotic value of approximately 90%. This suggests that the proposed

training procedure, although empiric, converges to some local optimum.

The selection of an extra training area is unconvenient, as it increases the size of the training

set (Fig.8(d)), or is not at all realistic for practical applications where no ground truth is available

(Fig.8(e)). Therefore, the final results in Fig.8(f) represent the best compromise between accuracy

and size of the training set, as an accuracy comparable to the classification in Fig.8(e) is achieved

without the need of an additional training area for the λ parameters. This is justified by the fact

that the majority vote benefits from having as input more accurate classifications, achieved

through separate λ parameters tuning steps.

Table II reports the classification accuracy on the dataset. The overall accuracy (OA) is

computed as:

OA =
100

NTOT

M∑
i=1

pi,i, (12)

where pi,i represents the number of the pixels from class i which are correctly assigned to i,

M is the number of classes, and NTOT is the total number of pixels in all classes. The average

accuracy AA is computed as:

AA =
1

M

M∑
i=1

100 ∗ pi,i
Ni

, (13)
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Fig. 7. Training data collected over the scene (a) and RGB composition of the first three Principal Components extracted from

the scene (b).

where Ni is the number of pixels in class i.

To mitigate the influence of the training samples we produced four maps as in Fig.8(f). This

resulted in an average overall accuracy of 88.12%, with a standard deviation in the results of

σ = 0.7.

In order to have a fair comparison to other techniques, we performed a classification with the

same training dataset using well-known distance measures and classification techniques widely

used in hyperspectral data analysis. As distance measures, the Spectral Angle Mapper (SAM)

[17] and the Spectral Information Divergence (SID) [29] have been applied in two different

ways to produce a classification map: majority vote of 20 separate classifications and a single
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Fig. 8. Synergetics classification results with different settings. From left to right: (a) classification obtained with one training

sample per class; (b) majority voting of 20 independent classifications, using a training dataset of 20 samples per class; (c)

same as (b), carried out after a step of spatial regularization; (d) image (c) after λ parameters tuning, obtained with an extra set

of 100 pixels per class; (e) image (c) after λ parameter tuning obtained using the full ground truth; (f) majority voting of 20

independent classifications using a training set of 20 samples per class. Each classification is obtained on the basis of 1 sample

per class, with the other 19 used to tune the λ parameters. This image represents the best compromise between classification

accuracy and traning dataset size.

Fig. 9. Increase in overall and average accuracy after automatic tuning of the λ parameters.
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TABLE II

CLASSIFICATION RESULTS FOR THE SALINAS DATASET: OVERALL ACCURACY (OA), AVERAGE ACCURACY (AA), AND

NUMBER OF TRAINING SAMPLES PER CLASS (TS). THE HORIZONTAL LINES SEPARATE THE METHODS IN THREE GROUPS:

CLASSIFICATION BASED ON SYNERGETICS, CLASSIFICATIONS WITH OTHER METHODS PERFORMED USING THE SAME

TRAINING DATASET OF THE CATEGORY ABOVE, AND PREVIOUS WORKS BY OTHER AUTHORS. THE RESULTS BASED ON

SYNERGETICS CONTAIN AS ADDED PARAMETER THE NUMBER OF ADDITIONAL TRAINING SAMPLES PER CLASS EMPLOYED

TO TUNE THE ATTENTION PARAMETERS λ (TSλ).

OA AA TS TSλ

Synergetics (a) 69.57 74.26 1 0

Synergetics (b) 82.43 84.96 20 0

Synergetics (c) 84.1 87.8 20 0

Synergetics (d) 87.82 90.21 20 100

Synergetics (e) 90.15 94.4 20 all

Synergetics (f) 88.82 92.35 20 0

SVM 81.44 90.6 20

SID 83.71 90.2 20

SAM 78.64 85.4 20

Factor Graphs [27] 85.32 90.91 20

Neural Networks [26] 87.55 88.03 40

Multinomial Logistic Regression [28] 86.49 NA 15

SVM + Morphological Operators [25] 87.25 NA 65

classification using the full training set, merging afterwards the classes of interest, following

the criterion of minimizing the overall errors. The two techniques gave similar results and only

the best results are shown, in which SID shows better discrimination power than SAM. We

also performed a classification with Support Vector Machine (SVM) [30], which operates in

implicit parameter hyperspaces by finding a manifold which divides the data of interest in two

groups in the hyperspace, according to some criteria. In spite of being a general classification

methodology, SVM have been often applied to hyperspectral data, due to their natural connection

to multidimensional data [31]. We used a Gaussian Radial Basis Function (RBF) kernel defined

as K(u, v) = exp(−γ|u− v|2), which is found to yield the best results for the classification of

a different AVIRIS scene (Indian Pines) in [32]. We found empirically the best parameters after

several tests, and set γ to 0.01 and assigned a large penalty to errors C = 100. We assess the
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TABLE III

CONFUSION MATRIX FOR CLASSIFICATION AS IN SYNERGETICS(F).

Broc1 Broc2 Flw Flw

Rgh

Flw

Smt

Stble Clry Grps Soil Corn Ltc

4

Ltc

5

Ltc

6

Ltc

7

Vnyrd

Broccoli1 99.4 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0

Broccoli2 0.03 99.95 0 0 0 0 0.3 0 0 0 0 0 0 0 0

Fallow 0 0 98.89 0 0.91 0 0 0 0 0.2 0 0 0 0 0

Flw Rough 0 0 0 99.78 0.22 0 0 0 0 0 0 0 0 0 0

Flw Smooth 0 0 5.53 0.37 93.95 0 0 0 0 0 0.04 0.04 0 0 0

Stubble 0 0 0.13 0 0 99.87 0 0 0 0 0 0 0 0 0

Celery 0 0 0.17 0 0 0 99.83 0 0 0 0 0 0 0 0

Grapes 0 0 0.25 0 0 0 0 74.17 0.1 2.84 0 0 0 0 22.62

Soil 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

Corn 0 0.12 2.44 0 0 0 0 0 1.25 94.08 1.13 0.98 0 0 0

Lettuce4 0 0 1.69 0 0 0 0 0 1.5 0 96.82 0 0 0 0

Lettuce5 0 0 0 0 0 0 0 0 20.03 0 0 79.87 0.1 0 0

Lettuce6 0 0 0 0 0 0 0 0 0 0 0 13.97 85.7 0.33 0

Lettuce7 0.28 4.02 1.03 0 0 0 0.84 0 0 0 0.84 0 4.39 88.6 0

Vineyard 0 0 0.56 0 0 0 0 23.82 0.04 1.17 0 0 0 0 74.41

statistical significance of the difference in classification accuracy against SVM by McNemar’s test

[33], which shows the two classifiers to be very different, with a probability for the differences

in the results to be caused by random variations of some kind below 1%. Finally, we include

results obtained through Factor Graphs [34] also on the base of the same training samples [27],

after applying a median filter to the parameter space. The main difference in the results between

the proposed approach and its competitors is the better discrimination between the classes grapes

and vineyard untrained, which drastically improves after the λ-parameter tuning.

We also compared results obtained on the same dataset in recent works in literature [26] [25]

[28]. As the first two make extensive use of morphological profiles, for sake of comparison

we took into account results obtained on the original spectral information, achieved with neural

networks [35] in the former and with SVM classifiers in the latter. In both cases, a sequence of

9 opening and closing morphological operations has been subsequently applied to regularize and
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improve classification results, in a step which could be comparable to the spatial regularization

described in Section III-B. In the case of [28] we take into account the results obtained with

multinomial logistic regression [36] after the collection of both labeled (L) and unlabeled (U )

samples, with U = 2L, before the integration of additional information through a segmentation

step. Results summarized in Table II show the proposed approach to be competitive both in

terms of classification accuracy and number of training samples needed, with results reported

in Synergetics (f) outperforming the competitors. It has to be remarked that the use of extended

morphological profiles and segmentation, which allows achieving superior results in the afore-

mentioned works, could be also included to improve the results of the proposed technique.

B. Pavia Center ROSIS dataset

We analyze the Pavia Center image acquired by the Reflective Optics System Imaging Spec-

trometer (ROSIS). The dataset consists of 610 × 340 pixels and has 103 bands selected from

the available 115, in the spectral range 0.43 to 0.86 µm, and with a spatial resolution of 1.3 m

[6]. The ground truth is shown in Fig. 10 (a). We collect only 10 training samples per class and

follow the same workflow leading to the classification reported in Fig. 8 (f), using the training

data both to perform a set of independent classifications and to tune the λ parameters in each

classification.

Results reported in Fig. 10 (b) have a satisfactory Overall accuracy of 91.25%. Some confusion

between shadow and water is probably due to the noise which is accentuated after normalizing

the spectra, and that is affecting ROSIS data more than AVIRIS, also because of the narrower

spectral bands characterizing the former sensor. The class shadows is separated in a satisfactory

way, but as the spectra are normalized this indicates that the materials within the shadow area

are largely similar. If the spatial regularization step described in Section III-B is skipped, results

are only slightly worse (1% in terms of Overall Accuracy). Better results could be obtained by

employing morphological operators on the data or on the classification results.

Experiments in [37] obtain a higher Overall Accuracy, but employ a training dataset about 50

times larger.
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Fig. 10. Ground truth (a) and synergetics classification results (b) for the ROSIS Pavia center dataset.

V. CONCLUSIONS

In this paper we presented a methodology for hyperspectral data analysis based on synergetics

theory, which represents the first attempt at producing a pixel-wise image classification derived

from these notions. This method performs a focused dimensionality reduction, by representing

the data in a vectorial space which uses a basis derived from user-defined prototype vectors. To

overcome the lack in flexibility of synergetics-based systems in the training step we allow the

selection of training areas, by performing classification on a majority voting basis. Furthermore,

the same training areas can be used to tune the attention parameters in the synergetics equation,

improving significantly the classification accuracy. The approach to the classification is discrim-

inative, which represents an advantage for hyperspectral data processing, as it requires a smaller
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training set and deals with Hughes phenomenon better with respect to generative models (see

[28] and references therein). This is of particular interest in perspective to the future advent of

spaceborn sensors such as the EnMAP mission [38], which will increase considerably the amount

of exploitable hyperspectral remotely sensed data. As a consequence, it will be required to have

available techniques which make such multidimensional data easier to handle. Results on the

AVIRIS Salinas scene show that the proposed methodology can outperform traditional algorithms

employed in the analysis of hyperspectral data. The main advantage of the proposed method

resides in the representation of the data in the prototype vectors space, which enables operations

in a semantic space, as the value of a projected test vector in each dimension represents the

similarity to a given class of interest, and the attention parameters λ used to weight the projections

are interdependent. As in traditional techniques the weighting of parameters is usually based

on some property of the data, the proposed approach is capable of providing more accurate

results. These could be further improved through a more refined technique to include spatial

prior information, such as the one used in [28]. Alternatively, a segmentation step [39] could be

performed, followed by a region-based classification with the proposed method, using the average

spectrum of each segment as a test vector. An additional iterative step employing morphological

filters could also improve results, with the drawback of removing at the same time information

which could be relevant [26].

Correspondences between this approach and classical estimation methods such as Least Squares

have been considered for the first time, opening interesting perspectives: the proposed approach

could be slightly modified by employing Total Least Squares (TLS) [40]. This would allow

taking into account the variability of the selected prototypes, regarded as measurements errors

used to weight the TLS objective function.

The original formulation of synergetics for pattern recognition in eq. (4) presents some non-

linear terms, representing the interactions between the chosen prototype vectors plus a saturation

component. These quantities should be investigated in the future, as only the first term which

is linear has been considered in the reported experiments. Additional future work includes the

description of a rejection class for the described classification method, which should be linked

to the residual vector r in equation (3). Furthermore, the supervision required by the algorithm

could be reduced by defining an adaptive threshold for the spatial regularization step described

in Section III-B.
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The proposed technique would be a good choice for analysis of hyperspectral images of natural

scenes, which usually are characterized by a limited intraclass variability. Suggested uses could

include geological applications, acid mine drainage monitoring, and vegetation classification.
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