Julian, Brian J. und Angermann, Michael und Schwager, Mac und Rus, Daniela (2012) Distributed Robotic Sensor Networks: An Information Theoretic Approach. The International Journal of Robotics Research, 31 (10), Seiten 1134-1154. SAGE Publications. doi: 10.1177/0278364912452675. ISSN 0278-3649.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
In this paper we present an information-theoretic approach to distributively control multiple robots equipped with sensors to infer the state of an environment. The robots iteratively estimate the environment state using a sequential Bayesian filter, while continuously moving along the gradient of mutual information to maximize the informativeness of the observations provided by their sensors. The gradient-based controller is proven to be convergent between observations and, in its most general form, locally optimal. However, the computational complexity of the general form is shown to be intractable, and thus non-parametric methods are incorporated to allow the controller to scale with respect to the number of robots. For decentralized operation, both the sequential Bayesian filter and the gradient-based controller use a novel consensus-based algorithm to approximate the robots’ joint measurement probabilities, even when the network diameter, the maximum in/out degree, and the number of robots are unknown. The approach is validated in two separate hardware experiments each using five quadrotor flying robots, and scalability is emphasized in simulations using 100 robots.
elib-URL des Eintrags: | https://elib.dlr.de/77146/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Distributed Robotic Sensor Networks: An Information Theoretic Approach | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2012 | ||||||||||||||||||||
Erschienen in: | The International Journal of Robotics Research | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 31 | ||||||||||||||||||||
DOI: | 10.1177/0278364912452675 | ||||||||||||||||||||
Seitenbereich: | Seiten 1134-1154 | ||||||||||||||||||||
Verlag: | SAGE Publications | ||||||||||||||||||||
ISSN: | 0278-3649 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | robotic, sensor network, distributed, information theory | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - VABENE (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
Hinterlegt von: | Angermann, Dr.-Ing. Michael | ||||||||||||||||||||
Hinterlegt am: | 19 Sep 2012 10:45 | ||||||||||||||||||||
Letzte Änderung: | 06 Sep 2019 15:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags