elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT

Nicholson, Wayne L. and Moeller, Ralf and the PROTECT Team, * and Horneck, Gerda (2012) Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT. Astrobiology, 12 (5), pp. 469-486. Mary Ann Liebert Inc.. doi: 10.1089/ast.2011.0748.

Full text not available from this repository.

Abstract

Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Thus, it is important to understand their global responses to long-term exposure to space or martian environments. As part of the PROTECT experiment, spores of B. subtilis 168 were exposed to real space conditions and to simulated martian conditions for 559 days in low- Earth orbit mounted on the EXPOSE-E exposure platform outside the European Columbus module on the International Space Station. Upon return, spores were germinated, total RNA extracted, fluorescently labeled, and used to probe a custom Bacillus subtilis microarray to identify genes preferentially activated or repressed relative to ground control spores. Increased transcript levels were detected for a number of stress-related regulons responding to DNA damage (SOS response, SPβ prophage induction), protein damage (CtsR/Clp system), oxidative stress (PerR regulon), and cell envelope stress (SigV regulon). Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated martian conditions. The results are discussed in the context of planetary protection for a hypothetical journey of potential forward contaminant spores from Earth to Mars and their subsequent residence on Mars.

Item URL in elib:https://elib.dlr.de/76935/
Document Type:Article
Title:Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Nicholson, Wayne L.Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA.UNSPECIFIEDUNSPECIFIED
Moeller, RalfRadiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.UNSPECIFIEDUNSPECIFIED
the PROTECT Team, *UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Horneck, GerdaRadiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.UNSPECIFIEDUNSPECIFIED
Date:2012
Journal or Publication Title:Astrobiology
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:12
DOI:10.1089/ast.2011.0748
Page Range:pp. 469-486
Publisher:Mary Ann Liebert Inc.
Status:Published
Keywords:Bacillus, Mars, Planetary protection, Spaceflight, Spores
HGF - Research field:Aeronautics, Space and Transport, Aeronautics, Space and Transport (old)
HGF - Program:Space, Space (old)
HGF - Program Themes:Research under Space Conditions, W FR - Forschung unter Weltraumbedingungen (old)
DLR - Research area:Raumfahrt, Space
DLR - Program:R FR - Research under Space Conditions, W FR - Forschung unter Weltraumbedingungen
DLR - Research theme (Project):R - Vorhaben Strahlenbiologie (old), W - Vorhaben Strahlenbiologie (old)
Location: Köln-Porz
Institutes and Institutions:Institute of Aerospace Medicine > Radiation Biology
Deposited By: Kopp, Kerstin
Deposited On:08 Aug 2012 15:32
Last Modified:06 Sep 2019 15:23

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.